Proving Identities: Compound Angle, Double Angle, Quotient & Reciprocal

  • Thread starter Thread starter Random-Hero-
  • Start date Start date
  • Tags Tags
    identities
Random-Hero-
Messages
40
Reaction score
0

Homework Statement



Prove the following identities.

a) cosx/1-sinx = secx + tanx

b) cos^2x+ sinxcosx/tanx = 2cos^2x


The Attempt at a Solution



Well what I tried doing was substituting the appropriate compound angle formulas, double angle formulas, quotient identities, and reciprocal identities, but I just can't seem to solve it all the way (if that's what "prove" means in the first place anyways)

Anyone have any idea how I'd go about solving them? This is what I have so far.

a) cosx/1-sinx = 1/cosx + sinx/cosx

b) I haven't started yet :/
 
Physics news on Phys.org
to prove part a) you should start with one side of the equation and manipulate it to arrive at the other side of the equation.

I'd begin with the left hand side. To get started, divide numerator and denominator by a certain term (do you see which term?)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top