Proving Independence of A & B: Probability Proof

  • Thread starter Thread starter jaejoon89
  • Start date Start date
  • Tags Tags
    Probability Proof
jaejoon89
Messages
187
Reaction score
0

Homework Statement



Prove if P(A|B) = P(A|B') then A and B are independent.

where B' is the complement of B

Homework Equations



if independent, P(A|B) = P(A)
also, P(A∩B) = P(A)P(B)

for conditional probability,
P(A|B) = P(A∩B) / P(B)

The Attempt at a Solution



P(A|B) = P(A∩B) / P(B) = P(B|A)P(A) / P(B)
P(A|B') = P(A∩B') / P(B') = P(B'|A)P(A) / P(B')

I'm not really sure how to go from here... What do I do?
 
Physics news on Phys.org
If you know that P(A|B) = P(A|B') and

P(A|B) = P(AB)/P(B) and P(A|B') = P(AB')/P(B')

(where AB = A intersect B)

then why not set these right-hand sides equal and see what happens?

--Elucidus
 
Yeah, I did that. Then P(A∩B) / P(B) = P(A∩B') / P(B') where ∩ means intersection

Sorry, I still don't see what should follow.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top