Hobold
- 82
- 1
Sorry for not being very descriptive in the title, but here's my problem:
Prove that for all a,b,c,d \ge 0, the following inequality is valid:
\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}
I've tried to make it this way:
(x-y)^2 \ge 0
x^2 + y^2 \ge 2xy
So:
[(a+b)-(c+d)]^4 \ge 0
[ (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 ] ^2 \ge 0
(a+b)^2 + (c+d)^2 \ge 2(a+b)(c+d)
(a+b)^2 + 2(a+b)(c+d) + (c+d)^2 \ge 4(a+b)(c+d)
a+b+c+d \ge 2 \sqrt{(a+b)(c+d)}
\frac{a+b+c+d}{2} \ge \sqrt{(a+b)(c+d)}
This is the farthest I got, can't figure out how to continue... any tips?
------------------
Another:
Prove, by induction, that the following inequality is true:
\prod_{n=1} \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}
I made this:
\left ( \prod_{n=1} \frac{2n-1}{2n} \right ) \cdot \frac{2n}{2n+1} < \frac{1}{\sqrt{2n+1}} \cdot \frac{2n}{2n+1}
\left ( \prod_{n=1} \frac{2n-1}{2n} \right ) \cdot \frac{2n}{2n+1} < \frac{2n}{\sqrt{(2n+1)(2n+1)^2}}
\left ( \prod_{n=1} \frac{2n-1}{2n} \right ) \cdot \frac{2n}{2n+1} < \frac{2n}{\sqrt{(2n+1)^3}}
Though I am really new to induction, so I'm not sure if my proof is finished.
Prove that for all a,b,c,d \ge 0, the following inequality is valid:
\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}
I've tried to make it this way:
(x-y)^2 \ge 0
x^2 + y^2 \ge 2xy
So:
[(a+b)-(c+d)]^4 \ge 0
[ (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 ] ^2 \ge 0
(a+b)^2 + (c+d)^2 \ge 2(a+b)(c+d)
(a+b)^2 + 2(a+b)(c+d) + (c+d)^2 \ge 4(a+b)(c+d)
a+b+c+d \ge 2 \sqrt{(a+b)(c+d)}
\frac{a+b+c+d}{2} \ge \sqrt{(a+b)(c+d)}
This is the farthest I got, can't figure out how to continue... any tips?
------------------
Another:
Prove, by induction, that the following inequality is true:
\prod_{n=1} \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}
I made this:
\left ( \prod_{n=1} \frac{2n-1}{2n} \right ) \cdot \frac{2n}{2n+1} < \frac{1}{\sqrt{2n+1}} \cdot \frac{2n}{2n+1}
\left ( \prod_{n=1} \frac{2n-1}{2n} \right ) \cdot \frac{2n}{2n+1} < \frac{2n}{\sqrt{(2n+1)(2n+1)^2}}
\left ( \prod_{n=1} \frac{2n-1}{2n} \right ) \cdot \frac{2n}{2n+1} < \frac{2n}{\sqrt{(2n+1)^3}}
Though I am really new to induction, so I'm not sure if my proof is finished.
Last edited: