A complete description
Prove inequality
\begin{equation}<br />
\int^\infty_0y^\frac{2(n-1)}{n}p(y)\,\mathrm{d}y\Big(\int^\infty_0y^\frac{1}{n}p(y)\,\mathrm{d}y\Big)^2>\int^\infty_0y^\frac{2}{n}p(y)\,\mathrm{d}y\Big(\int^\infty_0y^\frac{(n-1)}{n}p(y)\,\mathrm{d}y\Big)^2<br />
\nonumber<br />
\end{equation}
p(y)>0 and \int^\infty_0p(y)\,\mathrm{d}y=1 for any y
n is an integer and n\ge2$