gop
- 55
- 0
Homework Statement
Proof that for n>2 and n is a natural number it holds that
\prod_{k=1}^{n}\frac{k^{2}+2}{k^{2}+1}<3
and
\prod_{k=1}^{n}\frac{k^{2}+2}{k^{2}+1}<\frac{3n}{n+1}
Homework Equations
The Attempt at a Solution
My best approach was to split the product over the fraction and then to arrive at a statement that looks like
\prod_{k=2}^{n}k^{2}+2<\prod_{k=1}^{n}k^{2}+1
I then tried to prove by induction that this statement holds but that doesn't really work. The best result I got (for n+1) is then
(\prod_{k=2}^{n}k^{2}+2)<(\prod_{k=1}^{n}k^{2}+1)\cdot\frac{n^{2}+2n+2}{n^{2}+2n+3}
But I can't do anything usefuel with that...