boneill3
- 126
- 0
Homework Statement
We consider P2 the vector space of all real polynomials of degree at most 2.
Show that
<br /> <f,g> = \int_{-1}^{1}f(x)g(x)dx<br />
defines an inner product space
Homework Equations
I'm Using one of the Axioms of Inner product spaces IP1. which states that.
<br /> <u,u> \geq 0 with equality when and only when u=0_{v}
The Attempt at a Solution
For IP1
let a,b,c,d,e,f,x \in R
then
<br /> <f,g> = \int_{-1}^{1}f(x)g(x)dx<br />
<br /> <f,g> = \int_{-1}^{1}(a+bx+cx^2)(d+ex+fdx^2)dx<br />
<br /> <f,g> = \left[ \frac{cd+fx^3}{3}+\frac{bd+ex^2}{2}+adx\right]_{-1}^{1}<br />
<br /> <f,g> = 2ad+\frac{2cd+f}{3}\<br />
<br /> <f,g> \geq 0<br />
To show that equality to 0 implies the zero polynomial can I use?
let a,b,c,d,e,f \in R \neq 0
and
x\in R
Consider
<br /> <f,f> = \int_{-1}^{1}f(x)f(x)dx = \left[ \frac{cd+fx^3}{3}+\frac{bd+ex^2}{2}+adx\right]_{-1}^{1}<br /> <br />
if we assume
<br /> <f,f> = 0<br />
then this implies
<br /> \left[ \frac{cd+fx^3}{3}+\frac{bd+ex^2}{2}+adx\right]_{-1}^{1}<br /> = 0<br />
but a,b,c,d,e,f \neq 0
therefore
<br /> \left[ \frac{cd+fx^3}{3}+\frac{bd+ex^2}{2}+adx\right]_{-1}^{1}<br /> \neq 0<br />
contradicting our assumption
hence a,b,c,d,e,f = 0 the zero polynomial
So we have
<br /> <u,u> \geq 0
and
<br /> <u,u> = 0 \rightarrow f = 0_{v}
So IP1 holds
Is that enough to prove IP1 ?