PFStudent
- 169
- 0
Hey,
(From an Integration Table)
Prove,
<br /> {\int}{\sqrt {{{a}^{2}} - {{x}^{2}}}}{dx} = {{\frac {1}{2}}{\left(}{{{x}{\sqrt {{{a}^{2}} - {{x}^{2}}}}} + {{{a}^{2}}{\arcsin{\frac {x}{a}}}}}{\right)}}{,}{\,}{\,}{\,}{\,}{\,}{\,}{{{|}{x}{|}}{\leq}{{|}{a}{|}}}<br />
Knowledge of Trigonometric Substitution for Integration ("Backwards" and "Forwards").
Knowledge of integration techniques involving the form,
<br /> {\sqrt {{{a}^{2}} - {{x}^{2}}}}<br />
Integration by Parts (IBP),
<br /> {\int}{d{\left[}{u(x)}{v(x)}{\right]}} = {\int}{\biggl[}{u(x)}{d[v(x)]} + {v(x)}{d[u(x)]}{\biggl]}<br />
<br /> {\int}{u(x)}{d[v(x)]} = {{u(x)}{v(x)}} - {\int}{v(x)}{d[u(x)]}<br />
What is bothering me about this integral is that I do not have a {x} term on the outside of the radical which is preventing from evaluating this integral by normal convention.
Let,
<br /> {I} = {\int}{\sqrt {{{a}^{2}} - {{x}^{2}}}}{dx}<br />
In applying trigonometric substitution - consider the right triangle,
So,
<br /> {{a}{\sin{\theta}}} = {\sqrt {{{a}^{2}} - {{x}^{2}}}}<br />
Solving by "forward" substitution,
<br /> {x} = {\pm}{\sqrt {{{a}^{2}}{{\cos}^{2}{\theta}}}}<br />
However, how would you justify which root to take: the positive one or the negative one?
Thanks,
-PFStudent
Homework Statement
(From an Integration Table)
Prove,
<br /> {\int}{\sqrt {{{a}^{2}} - {{x}^{2}}}}{dx} = {{\frac {1}{2}}{\left(}{{{x}{\sqrt {{{a}^{2}} - {{x}^{2}}}}} + {{{a}^{2}}{\arcsin{\frac {x}{a}}}}}{\right)}}{,}{\,}{\,}{\,}{\,}{\,}{\,}{{{|}{x}{|}}{\leq}{{|}{a}{|}}}<br />
Homework Equations
Knowledge of Trigonometric Substitution for Integration ("Backwards" and "Forwards").
Knowledge of integration techniques involving the form,
<br /> {\sqrt {{{a}^{2}} - {{x}^{2}}}}<br />
Integration by Parts (IBP),
<br /> {\int}{d{\left[}{u(x)}{v(x)}{\right]}} = {\int}{\biggl[}{u(x)}{d[v(x)]} + {v(x)}{d[u(x)]}{\biggl]}<br />
<br /> {\int}{u(x)}{d[v(x)]} = {{u(x)}{v(x)}} - {\int}{v(x)}{d[u(x)]}<br />
The Attempt at a Solution
What is bothering me about this integral is that I do not have a {x} term on the outside of the radical which is preventing from evaluating this integral by normal convention.
Let,
<br /> {I} = {\int}{\sqrt {{{a}^{2}} - {{x}^{2}}}}{dx}<br />
In applying trigonometric substitution - consider the right triangle,
So,
<br /> {{a}{\sin{\theta}}} = {\sqrt {{{a}^{2}} - {{x}^{2}}}}<br />
Solving by "forward" substitution,
<br /> {x} = {\pm}{\sqrt {{{a}^{2}}{{\cos}^{2}{\theta}}}}<br />
However, how would you justify which root to take: the positive one or the negative one?
Thanks,
-PFStudent
Last edited by a moderator: