Proving lim 10^n/n!=0 Using Limit Theorems

  • Thread starter Thread starter Gott_ist_tot
  • Start date Start date
  • Tags Tags
    Limit
Gott_ist_tot
Messages
52
Reaction score
0

Homework Statement


Prove using limit theorems that

lim \frac{10^n}{n!} = 0

Homework Equations


We get to use limit theorems. These include
1 lim(a+b) = lim a + lim b,
2 lim(ab) = lim(a)lim(b),
3 lim(s_n) = \infty iff lim(1/s_n)= 0,
4 lim(ks_n) = k*lim(s_n)
5 if lim(s_n) = \infty and lim(t_n) equals some real number, then lim(s_n*t_n) = \infty

The Attempt at a Solution


I am having difficulty figuring out how to manipulate the factorial to match a theorem. Any advice/hints would be appreciated. Thanks.
 
Last edited:
Physics news on Phys.org
What does the limit approach? (n---> ?) well expand out n! as n(n-1)(n-2)*...*3*2*1 and see if that helps
 
n approached infinity. But what you said did it. Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top