Proving Limit of Bilinear Function to 0

  • Thread starter Thread starter yifli
  • Start date Start date
  • Tags Tags
    Function
yifli
Messages
68
Reaction score
0
Prove that \mbox{lim}_{(h,k) \rightarrow 0} \frac{|f(h,k)|}{|(h,k)|} = 0, where f is a bilinear function from R^n X R^m -> R^p

I don't know where to start only given the information that f is bilinear.
 
Physics news on Phys.org
Hi yifli! :smile:

Start by putting

h=h_1e_1+...+h_ne_n

and

k=k_1e_1+...+k_me_m

where the ei form a basis.

Now, how can you write f(h,k) now?
 
micromass said:
Hi yifli! :smile:

Start by putting

h=h_1e_1+...+h_ne_n

and

k=k_1e_1+...+k_me_m

where the ei form a basis.

Now, how can you write f(h,k) now?

so f(h,k) can be written as follows:
f(h,k)=h_1(k_1f(e_1,\overline{e_1})+\cdots+k_mf(e_1,\overline{e_m}))+h_2(k_1f(e_2,\overline{e_1})+ \cdots +k_mf(e_2,\overline{e_m}))+\cdots+h_n(k_1f(e_n,\overline{e_1})+\cdots+k_mf(e_n,\overline{e_m}))

e_i and \bar{e_i} represents the basis of R^n and R^m respectively

when both hi and ki tend to zero, I guess the numerator gets closer to zero faster than denominator because of the product hiki.
but how do you argue this rigorously?
 
yifli said:
so f(h,k) can be written as follows:
f(h,k)=h_1(k_1f(e_1,\overline{e_1})+\cdots+k_mf(e_1,\overline{e_m}))+h_2(k_1f(e_2,\overline{e_1})+ \cdots +k_mf(e_2,\overline{e_m}))+\cdots+h_n(k_1f(e_n,\overline{e_1})+\cdots+k_mf(e_n,\overline{e_m}))

e_i and \bar{e_i} represents the basis of R^n and R^m respectively

when both hi and ki tend to zero, I guess the numerator gets closer to zero faster than denominator because of the product hiki.
but how do you argue this rigorously?

Indeed, let me illustrate this on an example. I hope the general method will be clear from that:

Take

f:\mathbb{R}\times\mathbb{R}\rightarrow \mathbb{R}:(x,y)\rightarrow xy

Then we need to calculate

\lim_{(h,k)\rightarrow 0}{\frac{|hk|}{|(h,k)|}}

The easiest thing to do is pick the norm (it works without this too).

|(h,k)|=\max\{h,k\}

Then we know that h\leq \max\{h,k\}, thus

\frac{|h|}{|(h,k)|}\leq 1

Hence

0\leq \lim_{(h,k)\rightarrow 0}{\frac{|hk|}{|(h,k)|}}\leq \lim_{(h,k)\rightarrow 0}{|k|}=0

Try to do this in the general case...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top