Proving Linear Independence and Span of D

andytoh
Messages
357
Reaction score
3
I can't seem to figure this one out:

Question: Let D be a nonempty subset of a vector space V over a field F. Let B be a finite linearly independet subset of span D having n elements. Prove there exists a subset D' of D also having n elements such that

span[(D-D') U B] = span(D).

Moreover, if D is linearly independent, so is (D-D') U B.

Can anyone help?
 
Last edited:
Physics news on Phys.org
Here's the beginning of my induction proof for the case of 1 and 2 elements. I'm working on the nth step now.
 

Attachments

Ok, I've finished the proof now.

It is about 2 pages long! Even the base case for 1 element had to be modified to some length.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top