Proving Linear System: No Solution for AB-BA=I2 (2x2 Real Number Matrices)

annoymage
Messages
360
Reaction score
0

Homework Statement



Show that there are no A,B (2x2 and real number matrices)

such that AB-BA=I2

Homework Equations



N/A

The Attempt at a Solution



can anyone give me clue, how to prove this?
 
Physics news on Phys.org
Write down the full equation

<br /> \left(<br /> \begin{array}{cc}<br /> a_{11} &amp; a_{12} \\<br /> a_{21} &amp; a_{22}<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{cc}<br /> b_{11} &amp; b_{12} \\<br /> b_{21} &amp; b_{22}<br /> \end{array}<br /> \right)-\left(<br /> \begin{array}{cc}<br /> b_{11} &amp; b_{12} \\<br /> b_{21} &amp; b_{22}<br /> \end{array}<br /> \right)\left(<br /> \begin{array}{cc}<br /> a_{11} &amp; a_{12} \\<br /> a_{21} &amp; a_{22}<br /> \end{array}<br /> \right)=\left(<br /> \begin{array}{cc}<br /> 1 &amp; 0 \\<br /> 0 &amp; 1<br /> \end{array}<br /> \right)

After you do that it will be obvious
 
i did, but then i get,

\begin{pmatrix} bg-fc &amp; af+bh+be+df \\ ce+dg-aq-ch &amp; cf-bg \end{pmatrix}

assume that my

a11=a
a12=b
.
.
.
b21=g
b22=h

then? solve the equation right?
 
owh wait,

bg-fc=1

cf-bg=1

its contradiction..

right?
 
Yeah that's the idea I think
 
hoho, that's proof alright,, thank you very much

next, can you please check my next question i posted.. ^^
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top