Proving Linearity of Polynomial Transformations: Step-by-Step Guide & Examples

  • Thread starter Thread starter eyehategod
  • Start date Start date
  • Tags Tags
    Linear
eyehategod
Messages
82
Reaction score
0
i have to determine whether the function is a linear transformation. i attached a picture of the problem and of my work.

Im trying to prove T(U+V)=T(U)+T(V) where U and V are polynomials.
 

Attachments

  • LastScan.jpg
    LastScan.jpg
    9.8 KB · Views: 409
  • myWork.jpg
    myWork.jpg
    39.8 KB · Views: 443
Physics news on Phys.org
bad choice of name. linear transformations are "god given".
 
what does that even mean?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top