Proving Minimum Value of f(x) = a*cosh(x) + b*sinh(x)

  • Thread starter Thread starter John O' Meara
  • Start date Start date
  • Tags Tags
    Minimum Value
John O' Meara
Messages
325
Reaction score
0
The function f(x) is given by: a*cosh(x) + b*sinh(x), where a and b are positive constants. Prove that if (i) a > b, f(x) has a minimum value of \sqrt{a^2 - b^2}\\ (ii) a<b, f(x) has no maximum or minimum values.
(i) f(x) = a*cosh(x) + b*sinh(x), Therefore f'(x) = a*sinh(x) + b*cosh(x) = 0, for a minimum or a maximum. Therefore f'(x) = \frac{\exp^x(a+b) + \exp^{-x}(b-a)}{2}=0 \\. Therefore f'(x) = \exp^x(a + b) = - \exp^{-x}(b - a) \\. Therefore \exp^{2x}(a + b) = a - b \\. Hence 2x = \ln(\frac{a - b}{a + b}) \\. Hence x = \ln(\frac{a-b}{a+b})^\frac{1}{2}\\ Substituting for x in f(x) does not give a minimum value of \sqrt{a^2 - b^2}\\Any help would be appreciated. I was thinking that this thread could be solved like my last thread without the use of calculus to find the minimum, if that is the case, please tell me how to get started with f(x), and I will abandon the calculus approach to this problem. Thanks.
 
Physics news on Phys.org
Your solution is correct. Notice if a<b then there is no real root. So you have part (ii) already. Substitute your x into the original function and you will get sqrt(a^2-b^2) if you simplify carefully. You could probably do it like the trig case, but this approach doesn't seem to be going so badly.
 
When I substitute into the original function, a*cosh(x) +b*sinh(x), I get the following\frac{a}{2}[\exp^{\ln{(\frac{a-b}{a+b}})^{\frac{1}{2}}} + \exp^{- \ln{(\frac{a-b}{a+b}})^{\frac{1}{2}}}] \\ + \frac{b}{2}[ \exp^{\ln{(\frac{a-b}{a+b}})^{\frac{1}{2}}} - \exp^{-\ln{(\frac{a-b}{a+b}})^{\frac{1}{2}}}] \\, which seems to me to give the following \frac{a}{2}[\sqrt{\frac{a-b}{a+b}} - \sqrt{\frac{a-b}{a+b}}] + \frac{b}{2}[\sqrt{\frac{a-b}{a+b}} + \sqrt{\frac{a-b}{a+b}}]\\ Therefore we get \frac{a}{2}[0] + \frac{b}{2}[2\sqrt{\frac{a-b}{a+b}} \\
 
Last edited:
Noooo. The exponentials of the negative logs invert the fraction in the square root. So your first bracketted quantity should be [sqrt((a-b)/(a+b))+sqrt((a+b)/(a-b))], e.g. exp(-log(a/b))=b/a.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top