Proving modified Maxwell action is gauge invariant

Click For Summary
The discussion centers on demonstrating the gauge invariance of the modified Maxwell action under the transformation A^μ → A^μ + ∂^μχ. The first term's invariance is established, but the challenge arises with the second term, where the transformation leads to an additional term that complicates the proof. It is clarified that the action's invariance does not require the integrand to be strictly invariant, as it can be invariant up to a divergence term. The divergence theorem is invoked to argue that if fields vanish sufficiently at infinity, the integral of the divergence term can be considered zero. The conversation emphasizes the need to express the second term in terms of the 4-vector potential A to further analyze its behavior.
DaniV
Messages
31
Reaction score
3
Homework Statement
Consider the quantum field modified Maxwell action in 2 + 1 dimensions:
##S=\int (-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+\frac {\theta}{2}\epsilon^{\alpha\mu\nu}A_\alpha F_{\mu\nu})\,d^3x##
when ##\theta## is dimensionful constant and ##\epsilon^{\alpha\mu\nu}## Levi-Civita symbol
Show that this action is gauge invariant.
Relevant Equations
##F^{\mu\nu}=\partial^\mu A^\nu-\partial^\nu A^\mu##
gauge transformation: ##A^\mu \to A^\mu + \partial ^\mu \chi## when ##\chi## is scalar function.
I want to show that the action staying the same action after taking ##A^\mu \to A^\mu + \partial ^\mu \chi##, for the first term I suceeded in showing the invariance using the fact ##[\partial ^ \mu , \partial ^\nu]=0## but for the second term I'm getting: ##\epsilon^{\alpha\mu\nu}A_\alpha F_{\mu\nu} \to \epsilon^{\alpha\mu\nu}A_\alpha F_{\mu\nu} +\epsilon^{\alpha\mu\nu}(\partial_\alpha \chi )F_{\mu\nu} ## so I don'`t understand how to show the last step: ##\epsilon^{\alpha\mu\nu}(\partial_\alpha \chi) F_{\mu\nu}=0##

Thanks.
 
Physics news on Phys.org
DaniV said:
how to show the last step: ##\epsilon^{\alpha\mu\nu}(\partial_\alpha \chi) F_{\mu\nu}=0##
This expression will not equal zero, in general.

In order for the action to be invariant under the transformation, it is not necessary that the integrand of the action integral be invariant. It is sufficient for the integrand to be invariant up to a divergence term. Using the divergence theorem, the integral of the divergence term will equal zero if the fields vanish at infinity sufficiently rapidly.
 
TSny said:
This expression will not equal zero, in general.

In order for the action to be invariant under the transformation, it is not necessary that the integrand of the action integral be invariant. It is sufficient for the integrand to be invariant up to a divergence term. Using the divergence theorem, the integral of the divergence term will equal zero if the fields vanish at infinity sufficiently rapidly.
how to show that this expression is a total derivative so we can use divergence theorem, I tried to do integration by parts and I got:
##\int \epsilon^{\alpha \mu \nu}(\partial_\alpha \chi )F_{\mu\nu}\, d^3x = \oint \epsilon^{\alpha \mu \nu} \chi F_{\mu\nu} d\vec S ## ##+\int \epsilon^{\alpha \mu \nu} \chi (\partial_\alpha F_{\mu\nu})\, d^3x ##
the first term of integration is zero due to boundry condition but the second one is not total derivative because ##\chi ## is outside the derivative..
 
Last edited:
Write out the second one in terms of the 4-vector potential ##A##.
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 30 ·
2
Replies
30
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K