Proving Non-Trivial Solutions of Ax = b

  • Thread starter Thread starter HaLAA
  • Start date Start date
  • Tags Tags
    Linear algebra
HaLAA
Messages
85
Reaction score
0
As I study today, I read through my textbook that says if Ax=b has non-trival solution, then b span in A.

I want to know how can I prove it.
 
Physics news on Phys.org
I don't understand what you mean by "b span in A". Can you post the exact claim you came across? You should also tell us where you found it. What book? What page number?
 
Sounds like it should be b is in THE span OF (the column vectors of) A. The proof would just be knowing the definition of span, plus multiplying A times x and writing it out in terms of the components of x.
 
The "range" of A, the set of all vector of the form Av for some v in the domain of A, is sometimes called the "span" of A. Since we can take, in succession, v= <1, 0, 0, ..., 0>, v= <0, 1, 0, ..., 0>, v= <0, 0, 1, ..., 0>, to v= <0, 0, 0, ..., 1> and applying A to each of those gives a column of A, it can be shown that the columns of A span the range of A. And, if A is invertible, form a basis for it.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top