Proving Projective Modules Have Free Modules as Direct Sums

  • Thread starter Thread starter peteryellow
  • Start date Start date
  • Tags Tags
    Modules
peteryellow
Messages
47
Reaction score
0
Please help me to prove that for a projective module P there exists a free module F, such that P +F =F.

Here + denotes direct sum = denotes isomorphic.

Thanks
 
Physics news on Phys.org
Did you really mean to write P + F = F? It's a standard result that a module is projective if and only if there is a module Q and free module F such that P + Q = F. Can you prove that?

It does seem to follow that there exists a free module F' with P + F' = F', although I've never seen it stated like that before.
 
I have seen this called Eilenberg's trick. The idea is that Q+P=F1 where Q is projective and F1 is free. Now let F=F1+F1+F1.. a countable number of times.

Then, P+F is isomorphic to P+Q+P+Q+P+Q.. which is isomorphic to F.
 
That's what I was thinking of, although I didn't know it was called Eilenberg's trick.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top