Treadstone 71
- 275
- 0
Is it possible to show by induction that f:[a,b]->R, a bounded function, is Riemann integrable if f has a countable number of discontinuities? I'm told this is usually done with Lebesgue integrals, but I don't see why an inductive proof of this using Riemann/Darboux integrals can't work.