broegger
- 257
- 0
Hi, I have a problem.
I want to show that
\frac{d}{dt} \int_{-\infty}^{\infty} \psi_1^{*}\psi_2 dx = 0
for any two (normalizable) solutions to the Schrödinger equation. I have tried rearranging the Schrödinger equation to yield expressions for \psi_1^{*} and \psi_2 like this:
\psi_1^{*} = \frac1{V(x)}\left( ih\frac{\partial \psi_1^{*}}{\partial t} + \frac{h^2}{2m}\frac{\partial^2 \psi_1^{*}}{\partial x^2} \right)
\psi_2 = \frac1{V(x)}\left( ih\frac{\partial \psi_2}{\partial t} + \frac{h^2}{2m}\frac{\partial^2 \psi_2}{\partial x^2} \right)
It gets me nowhere...
I want to show that
\frac{d}{dt} \int_{-\infty}^{\infty} \psi_1^{*}\psi_2 dx = 0
for any two (normalizable) solutions to the Schrödinger equation. I have tried rearranging the Schrödinger equation to yield expressions for \psi_1^{*} and \psi_2 like this:
\psi_1^{*} = \frac1{V(x)}\left( ih\frac{\partial \psi_1^{*}}{\partial t} + \frac{h^2}{2m}\frac{\partial^2 \psi_1^{*}}{\partial x^2} \right)
\psi_2 = \frac1{V(x)}\left( ih\frac{\partial \psi_2}{\partial t} + \frac{h^2}{2m}\frac{\partial^2 \psi_2}{\partial x^2} \right)
It gets me nowhere...