ElDavidas
- 78
- 0
Take L to be a subspace of sl (2,R). (R is the real numbers)
<br /> L = \left(<br /> \begin{array}{ccc}<br /> 0 & -c & b\\<br /> c & 0 & -a\\<br /> -b & a & 0<br /> \end{array}\right)<br />
The basis elements of L are
<br /> e_1 = \left(<br /> \begin{array}{ccc}<br /> 0 & 0 & 0\\<br /> 0 & 0 & -1\\<br /> 0 & 1 & 0<br /> \end{array}\right)<br />
<br /> e_2 = \left(<br /> \begin{array}{ccc}<br /> 0 & 0 & 1\\<br /> 0 & 0 & 0\\<br /> -1 & 0 & 0<br /> \end{array}\right)<br />
<br /> e_3 = \left(<br /> \begin{array}{ccc}<br /> 0 & -1 & 0\\<br /> 1 & 0 & 0\\<br /> 0 & 0 & 0<br /> \end{array}\right)<br />
What is the best way to show that this Lie Algebra is simple (i.e. the only ideals are {0} and L? I know it's non-abelian.
<br /> L = \left(<br /> \begin{array}{ccc}<br /> 0 & -c & b\\<br /> c & 0 & -a\\<br /> -b & a & 0<br /> \end{array}\right)<br />
The basis elements of L are
<br /> e_1 = \left(<br /> \begin{array}{ccc}<br /> 0 & 0 & 0\\<br /> 0 & 0 & -1\\<br /> 0 & 1 & 0<br /> \end{array}\right)<br />
<br /> e_2 = \left(<br /> \begin{array}{ccc}<br /> 0 & 0 & 1\\<br /> 0 & 0 & 0\\<br /> -1 & 0 & 0<br /> \end{array}\right)<br />
<br /> e_3 = \left(<br /> \begin{array}{ccc}<br /> 0 & -1 & 0\\<br /> 1 & 0 & 0\\<br /> 0 & 0 & 0<br /> \end{array}\right)<br />
What is the best way to show that this Lie Algebra is simple (i.e. the only ideals are {0} and L? I know it's non-abelian.