Proving Space of Differential Functions Not Closed

lady99
Messages
4
Reaction score
0
how i prove that space of defrential function not closed?
 
Mathematics news on Phys.org
You need to give us more details. Closed in the sense of topology or closed in the sense of being a subspace of a vector space (or a group or whatever)? Do you mean differential? What sort of objects is it acting on? Just real-valued functions of one real variable?
 
{x:xis polynomail} subset c[a,b]}
 
Still not enough information! If I were to guess, then it would be that you want to know how to prove that the space of differentiable functions between 2 topological spaces is not closed under some topology.

Is this correct? If so, which topology? Don't hold back!
 
I would interpret "c[a, b]" as the set of functions continuous on [a, b] but the orignal post said "differentiable" which would be "c1[a, b]".

So I take it you want to show that the set of all polynomials is not closed as a subset of the set of all differentiable functions on some interval.

But it is still not clear if you mean "closed" under some operation or "closed" in some topology. And, we would need to know what operation or topology is involved.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top