Proving Special Relativity Wrong: Experiments & Particles

  • Thread starter Thread starter moses99
  • Start date Start date
  • Tags Tags
    Relativity
moses99
Messages
1
Reaction score
0
is there any experiments that prove special relativity wrong
like discovering particles faster than light?
 
Physics news on Phys.org
moses99 said:
is there any experiments that prove special relativity wrong
like discovering particles faster than light?
Special relativity applies to spacetimes that are flat and have no gravitational constant.

In many experiments we ignore spacetime curvature (or the gravitational constant) because the factor is insignificant. But in experiments where this factor is significant special relativity no longer applies.
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
7
Views
1K
Replies
41
Views
5K
Replies
24
Views
2K
Replies
9
Views
2K
Replies
11
Views
1K
Replies
44
Views
4K
Replies
6
Views
1K
Back
Top