signalcarries
- 4
- 0
Homework Statement
Prove that \sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{n+m}{l}
Homework Equations
If a and b are any numbers and n is a natural number, then (a+b)^{n}=\sum_{j=0}^{n} \binom{n}{j} a^{n-j}b^{j}
The Attempt at a Solution
I know that (1+x)^{n}(1+x)^{m}=(1+x)^{n+m} so that \sum_{k=0}^{n} \binom{n}{k}x^{k} \cdot \sum_{j=0}^{m} \binom{m}{j}x^{j} = \sum_{l=0}^{n+m} \binom{n+m}{l}x^{n+m}
If I let j=l-k, then I get \sum_{k=0}^{n} \binom{n}{k}x^{k} \cdot \sum_{l=k}^{m+k} \binom{m}{l-k}x^{l-k} = \sum_{l=0}^{n+m} \binom{n+m}{l}x^{n+m}
I can see that I'm close to the desired result--I'm just having trouble understanding how to get to it.