Proving Symmetry and Rank of B=A - aXX^T | Unit Eigenvector Help

  • Thread starter Thread starter JerryKelly
  • Start date Start date
  • Tags Tags
    Unit
JerryKelly
Messages
11
Reaction score
0
If A is a symmetric nxn mx of rank<=r>=1 and X is a unit eigenvector of A, with eigenvalue a not= 0, let B=A - aXX^T. Show that B is symmetric and that N(A) is a proper subspace of N(B). Conclude that rank B=<r-1.
i could show X is in N(B) but not in N(A). Does anyone know how I can prove it in general? Then,I could prove N(A) is a proper subspace of N(B). Thanks!
 
Physics news on Phys.org
I figured it out already.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top