odolwa99
- 85
- 0
In attempting this question, I decided to expand the first statement. Can anyone help me out?
Many thanks.
If \sin A=\sin(A+30^{\circ}), show that \tan A=2+\sqrt{3}.
\sin A=\sin A\cos30+\cos A\sin30
\sin A=\frac{\sin A\sqrt{3}+\cos A}{2}
2\sin A=\sin A\sqrt{3}+\cos A
\sin A(2-\sqrt{3})=\cos A
2-\sqrt{3}=\frac{\cos A}{\sin A}
Many thanks.
Homework Statement
If \sin A=\sin(A+30^{\circ}), show that \tan A=2+\sqrt{3}.
Homework Equations
The Attempt at a Solution
\sin A=\sin A\cos30+\cos A\sin30
\sin A=\frac{\sin A\sqrt{3}+\cos A}{2}
2\sin A=\sin A\sqrt{3}+\cos A
\sin A(2-\sqrt{3})=\cos A
2-\sqrt{3}=\frac{\cos A}{\sin A}
Last edited: