Proving that Every Closed Set in Separable Metric Space is Union of Perfect and Countable Set

Rasalhague
Messages
1,383
Reaction score
2

Homework Statement



Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable. (Rudin: Principles of Mathematical Analysis, 2nd ed.)

Homework Equations



Every separable metric space has a countable base.

The Attempt at a Solution



Let F be closed. Using the above fact, I've shown that the isolated points of F are at most countable, likewise their closure. I'm trying to construct a perfect set by removing non-limit points of F' points from F', the set of limit points of F, but it's not quite falling into place yet. Is this a good direction to go?
 
Physics news on Phys.org
Careful, that is a countable _local_ base, not a countable global base, i.e., every metric space is 1st-countable, but not necessarily 2nd-countable.
EDIT: Sorry, I did not read carefully: the hypothesis of separable implies 2nd countable.
 
WWGD said:
Careful, that is a countable _local_ base, not a countable global base, i.e., every metric space is 1st-countable, but not necessarily 2nd-countable.

It's a countable global base since the space is separable.
 
Yes, thanks, I just corrected it as you were writing; I did not read carefully-enough.
 
Hint: consider the points ##x\in F## for which every neighborhood of ##x## meets ##F## in uncountably many points.
 
Got it, thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top