Proving that the Dirac Delta is the limit of Gaussians

xWaffle
Messages
26
Reaction score
0

Homework Statement


I need to prove for arbitrary functions φ(x) that:

\lim_{\lambda \to 0} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \lambda} exp\left( \frac{-x^{2}}{2 \lambda^{2}} \right) \varphi(x) dx = \varphi(0),

which, in the sense of distributions is basically the delta function,

\frac{1}{\sqrt{2 \pi} \lambda} exp\left( \frac{-x^{2}}{2 \lambda^{2}} \right) = \delta (x)

Homework Equations


(see above)


The Attempt at a Solution


I can easily explain graphically what happens as λ→0, i.e., as λ approaches zero, the width of the distribution gets thinner and thinner, and the height of the peak gets higher and higher; the limit, of course, being an infinitely high and infinitesimally thin spike (which we know as the Dirac delta function).

JgHoWhc.png


Now, to prove this mathematically, I've seen some weird and completely different approaches being taken here, in random lecture notes I find around the web, and on stackoverflow. Everyone's approach is different but none really hit home with me.

After discussing with my professor a bit, he hinted I should try to split the integral up (I'm assuming into a part from -∞ to some arbitrary constant -c, -c to c, and c to +∞. Nothing I can find online or in my textbook resembles this, which makes me think we're supposed to be really stretching our brains with this one.

So, if I split the integral up,

\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \lambda} exp\left( \frac{-x^{2}}{2 \lambda^{2}} \right) \varphi(x) dx = \int_{-\infty}^{-c} \frac{1}{\sqrt{2 \pi} \lambda} exp\left( \frac{-x^{2}}{2 \lambda^{2}} \right) \varphi(x) dx + \int_{-c}^{c} \frac{1}{\sqrt{2 \pi} \lambda} exp\left( \frac{-x^{2}}{2 \lambda^{2}} \right) \varphi(x) dx + \int_{c}^{\infty} \frac{1}{\sqrt{2 \pi} \lambda} exp\left( \frac{-x^{2}}{2 \lambda^{2}} \right) \varphi(x) dx

Now what..? How does this help me? I realize c is free to be whatever we want it to be, but how can that put us onto a path to proving:

\lim_{\lambda \to 0} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \lambda} exp\left( \frac{-x^{2}}{2 \lambda^{2}} \right) \varphi(x) dx = \varphi(0)?
 
Physics news on Phys.org
hi xWaffle! :smile:

have you tried the same method as for φ = constant?

ie make it the square-root of the double integral ∫∫ (1/2πλ2) e-r22 φ(rcosθ)φ(rsinθ) rdrdθ,

integrate wrt θ, then integrate by parts:

i think the [] part is [φ(0)]2, and the ∫ part has no 1/λ and so hopefully can be proved to –> 0
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top