Proving the Addition Formula for Complex Functions

  • Thread starter Thread starter kasse
  • Start date Start date
  • Tags Tags
    Complex Functions
kasse
Messages
383
Reaction score
1
How can I show that

Aexpi(\omega t - kx + \phi_{1}) + Aexpi(\omega t + kx + \phi_{2}) = 2Aexpi(\omega t + \frac{\phi_{1} + \phi_{2}}{2})cos(kx - \frac{\phi_{1} - \phi_{2}}{2})? My book states this without proof, as if it was obvious.
 
Physics news on Phys.org
Hi kasse! :smile:

Hint: eiA + B = eiA + eiB, so divide by the first half of the righthand side, and use eiC + e-iC = 2cosC. :wink:
 
Danke schön
 
tiny-tim said:
Hi kasse! :smile:

Hint: eiA + B = eiA + eiB, so divide by the first half of the righthand side, and use eiC + e-iC = 2cosC. :wink:
Oh, dear, oh, dear, oh, dear, tiny-tim! eiA + B = (eiA)(eiB).
 
oops!

HallsofIvy said:
Oh, dear, oh, dear, oh, dear, tiny-tim! eiA + B = (eiA)(eiB).

Geman for oops! :redface:
 
eiA + B = (eiA)(eB)...?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top