happyg1
- 304
- 0
Homework Statement
Here's the problem I've been trying to get my mind around:
Prove that there exists an isomorphism of F^n into Hom(Hom(F^n,F),F).
I'm missing something. Here's what I get to:
F^n is an n-tuple and F is a field. So I can see that there is a set of homomorphisms from F^n into F.
It would be a finite n-tuple mapped into an infinite field, so there would just be a finite number of elements mapped infinitely.
I used n=3 and the real numbers as an example for the sake of trying to understand this:
Define a homomorphism T:F^n \rightarrow F as follows:
x_1=1,x_2=2,x_3=3,x_3=4,x_3=4.1,x_3=...
so x_3 is everything else besides 1 and 2.
Then I get confused trying to define Hom(Hom(F^n,F),F) Am I just mapping everything back into the origional F? And isn't that just what I started with, which is F?(or the reals in my attempted example)
So the whole point is to show that there is an isomorphim from F^n into the Hom((HomF^n,F),F) But it looks to me like F^n is a finite n-tuple and I can't get my mind around how there can be an isomprphism between an infinite field and a finite n-tuple.
What am I missing? Where have I gone wrong?
any clarification will be greatly appreciated.
CC
Homework Statement
Homework Equations
The Attempt at a Solution
Last edited: