Proving the GCD Property: A Challenge for Algebra Students

kntsy
Messages
80
Reaction score
0
urgent algebra GCD Proof problem

Homework Statement


let d=gcd(m,n). Prove that d=am+bn, where a,b are integers.


Homework Equations


use of induction and euclidean algorithm.


The Attempt at a Solution


i know when d being a generator and d=am+bn where m,n are generators, then d=gcd(m,n).
But i got stuck when proving the converse(which is the problem statement above).

I use the iterative algorithm(i.e. "n=qm+r";gcd(m,n)=gcd(m,r) and so on) but just does not work. And i do not know how to use "induction" in this proof.

Thank you for helping me.
 
Physics news on Phys.org


Use the Euclidean algorithm.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top