Proving the Infinitude of Primes: Euler's Proof and Its Limitations

MostlyConfusd
Messages
3
Reaction score
0
Infinite primes proof?

Someone told me Euler proved that there are infinitely many prime numbers by proving that the sum of their reciprocals is infinite.

I have one concern. How can you prove the infinitude of primes by this method without assuming the set to be infinite in the first place.
 
Physics news on Phys.org


Search for zeta function by euler, over internet and how it's proved:

zeta_function.jpg


for s=1, LHS diverges.
So RHS must diverge as well, for s=1, which helps to deduce that rhs has infinite terms,ie. infinite number of primes.

So,you actually don't need to assume infinite number of primes before hand, but rather just that there are infinite number of positive integers.
 


So, because the series diverges we can say there are infinitely many primes, but is that because the primes exhibit some uniformity in their distribution? my calc teacher has been over divergence and convergence several times and all that divergence seems to mean is that the denominator grows less quickly than that of a convergent function. Also, when a function converges, it dosen't prove the series is finite, so how can this be a helpful test?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top