cabin5
- 17
- 0
Homework Statement
Prove that
\left\langle\alpha x,y\right\rangle-\alpha\left\langle x,y\right\rangle=0 for \alpha=i
where
\left\langle x,y\right\rangle=\frac{1}{4}\left\{\left\|x+y\right\|^{2}-\left\|x-y\right\|^{2}+i\left\|x+iy\right\|^{2}-i\left\|x-iy\right\|^{2}\right\}
Homework Equations
The Attempt at a Solution
I put the alpha*x into that equation and substract it from \alpha\left\langle x,y\right\rangle
unfortunately, I couldn't find zero, and what it yielded is
\frac{1}{2}\left[\left\|x-y\right\|^{2}-\left\|x+y\right\|^{2}+\left\|x+iy\right\|^{2}-\left\|x-iy\right\|^{2}\right]
How on Earth can this expression yield zero?