MHB Proving the Irrationality of $\sqrt{3}$

  • Thread starter Thread starter paulmdrdo1
  • Start date Start date
  • Tags Tags
    Irrational
paulmdrdo1
Messages
382
Reaction score
0
prove that $\sqrt{3}$ is irrational.

this is what I tried

$\sqrt{3}=\frac{p}{q}$ whee p and q are integers in lowest terms. common factor of +\-1 only.

squaring both sides

$\frac{p^2}{q^2}=3$

$p^2=3q^2$ assuming that $3q^2$ is even then $p^2$ is even hence p is also even.

$(3k)^2=3q^2$ where is k is an even integer.

then,

$q^2=3k^2$ q is also even

if p and q is even they have common factor of 3, thus contradicting the assumption that they have no common factor except +\-1. hence $\sqrt{3}$ is irrational.

is my proof correct? if it's not, can you show me the correct proof of this.

thanks!(Talking)
 
Mathematics news on Phys.org
paulmdrdo said:
prove that $\sqrt{3}$ is irrational.

this is what I tried

$\sqrt{3}=\frac{p}{q}$ whee p and q are integers in lowest terms. common factor of +\-1 only.

squaring both sides

$\frac{p^2}{q^2}=3$

$p^2=3q^2$ assuming that $3q^2$ is even then $p^2$ is even hence p is also even.

$(3k)^2=3q^2$ where is k is an even integer.

then,

$q^2=3k^2$ q is also even

if p and q is even they have common factor of 3, thus contradicting the assumption that they have no common factor except +\-1. hence $\sqrt{3}$ is irrational.

is my proof correct? if it's not, can you show me the correct proof of this.

thanks!(Talking)
You have the right idea, but it is buried in a layer of confusion surrounding the word "even". You are obviously trying to model your proof on the standard proof that $\sqrt2$ is irrational. The proof for $\sqrt2$ is based on showing that in that case $p$ and $q$ must both be even. But the reason that even numbers are important in that proof is that an even number is a multiple of $2$. If you go back to that proof and substitute "multiple of $2$" every time you see the word "even", then you will have a better idea of how to do the proof for $\sqrt3$. All you will have to do is to replace "multiple of $2$" by "multiple of $3$". The proof for $\sqrt3$ should not involve the word "even" at all. What really matters (as you have realized towards the end of your argument) is that $p$ and $q$ must both be multiples of $3$. If you focus your argument entirely on that, and leave out all references to numbers being even, then you will have a good proof of this result.
 
It would also be a good idea to prove that the square of number is only a multiple of three if the number was a multiple of three.

This would be easiest to prove using the contrapositive, which is "if the number is not a multiple of three, then the square is not a multiple of three".

So if we have integers p and k such that $\displaystyle \begin{align*} p = 3k + 1 \end{align*}$ then

$\displaystyle \begin{align*} p^2 &= \left( 3k + 1 \right) ^2 \\ &= 3k^2 + 6k + 1 \\ &= 3 \left( k^2 + 2k \right) + 1 \end{align*}$

which is not a multiple of three. Also if p and k were integers such that $\displaystyle \begin{align*} p = 3k + 2 \end{align*}$, then

$\displaystyle \begin{align*} p^2 &= \left( 3k + 2 \right) ^2 \\ &= 9k^2 + 12k + 4 \\ &= 9k^2 + 12k + 3 + 1 \\ &= 3 \left( 3k^2 + 4k + 1 \right) + 1 \end{align*}$

which is also not a multiple of three.

Therefore if the square of a number was a multiple of three, the original number had to have been a multiple of three. Q.E.D.
 
A lesser known form of proof runs as follows:

If $n$ is a natural number, and $\sqrt{n} \in \Bbb Q$, then $\sqrt{n} \in \Bbb Z$.

You may want to reflect a bit on why this is so, because it is NOT obvious. I suggest approaching this problem like so:

Suppose $n = \dfrac{a^2}{b^2}$, and that $p$ is a prime for which $p^k|b$ but $p^{k+1}\not\mid b$. Show that $p^k|a$, and thus conclude $b|a$.

So in looking for square root(s) of 3, we need only consider $\{-3,-2,-1,0,1,2,3\}$, which we can test individually.

In particular, any square-free positive integer must have an irrational square root (this is a powerful result, as it handles MANY cases "all at once").
 
This is my second attemp

$\sqrt{3}=\frac{p}{q}$ whee p and q are integers in lowest terms. common factor of +\-1 only.

squaring both sides

$\frac{p^2}{q^2}=3$

$p^2=3q^2$ since $3q^2$ is a multiple of 3 p must also be a multiple of 3.

now I have,

$(3k)^2=3q^2$

then,

$q^2=3k^2$ $q^2$ is also a multiple of 3.

but if p and q is even they have common factor of 3, thus contradicting the assumption that they have no common factor except +\-1. hence $\sqrt{3}$ is irrational.

is this now correct?

thanks!(Talking)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
3K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
9
Views
11K
Replies
1
Views
1K
Replies
4
Views
1K
Replies
26
Views
3K
Back
Top