evagelos
- 314
- 0
formal vs informal
in proving that: lim_{n\rightarrow\infty} \frac{1}{n}\neq 1 the following proof was suggested.
Proof:
Suppose lim_{n\rightarrow\infty}\frac{1}{n} =1, but lim_{n\rightarrow\infty}\frac{1}{n} =0, hence:
For all ε>0
1) There exists mεN such that: n\geq m\Longrightarrow |\frac{1}{n}|<\frac{\epsilon}{2}
2)There exists kεN such that : n\geq k\Longrightarrow |\frac{1}{n}-1|<\frac{\epsilon}{2}
Choose r = max{m,k},then r\geq m,r\geq k
Let ,n\geq r\Longrightarrow n\geq m\wedge n\geq k.
Hence : |\frac{1}{n}|<\frac{\epsilon}{2} and |\frac{1}{n}-1|<\frac{\epsilon}{2}.
Thus : |\frac{1}{n}-\frac{1}{n}+1|=1\leq |\frac{1}{n}| + |\frac{1}{n}-1|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
.....or 1<ε...But since this holds for all ε>0 we put ε=1 and we have 1<1 ,a contradiction .
Therefor lim_{n\rightarrow\infty}\frac{1}{n}\neq 1
Write a formal proof of the above ,thus proving that the above informal proof is wrong
in proving that: lim_{n\rightarrow\infty} \frac{1}{n}\neq 1 the following proof was suggested.
Proof:
Suppose lim_{n\rightarrow\infty}\frac{1}{n} =1, but lim_{n\rightarrow\infty}\frac{1}{n} =0, hence:
For all ε>0
1) There exists mεN such that: n\geq m\Longrightarrow |\frac{1}{n}|<\frac{\epsilon}{2}
2)There exists kεN such that : n\geq k\Longrightarrow |\frac{1}{n}-1|<\frac{\epsilon}{2}
Choose r = max{m,k},then r\geq m,r\geq k
Let ,n\geq r\Longrightarrow n\geq m\wedge n\geq k.
Hence : |\frac{1}{n}|<\frac{\epsilon}{2} and |\frac{1}{n}-1|<\frac{\epsilon}{2}.
Thus : |\frac{1}{n}-\frac{1}{n}+1|=1\leq |\frac{1}{n}| + |\frac{1}{n}-1|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
.....or 1<ε...But since this holds for all ε>0 we put ε=1 and we have 1<1 ,a contradiction .
Therefor lim_{n\rightarrow\infty}\frac{1}{n}\neq 1
Write a formal proof of the above ,thus proving that the above informal proof is wrong
Last edited: