- 1,424
- 3
After browsing some maths forums, I come across some problems. But since that forum is quite unactive, so I think I'll post it here.
So this is not homework.
I have never seen this kind of problem before. I've tried all of them, and so I'm posting for some confirmation from you guys. There are 2 problems in total.
1. Prove the following limit does not exist:
\lim_{n \rightarrow + \infty} \sin (n)
Proof:
There exists infinity n's such that:
\frac{\pi}{6} + 2k \pi < n < \frac{5 \pi}{6} + 2k \pi, \ k \in \mathbb{Z}, it means:
\frac{1}{2} < \sin (n) < 1
There also exists infinity n's such that:
-\frac{5 \pi}{6} + 2k \pi < n < -\frac{\pi}{6} + 2k \pi, \ k \in \mathbb{Z}, it means:
- 1 < \sin (n) < - \frac{1}{2}
So as n tends to infinity, sin(n) can take either value from \left] -1 ; \ - \frac{1}{2} \right[, or \left] \frac{1}{2} ; \ \ 1 \right[. That yields the limit above does not exists.
-----------------
2. Prove the following limit does not exist:
\lim_{n \rightarrow + \infty} \sin (n ^ 2)
Proof:
If that limit exists then:
\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 0
That means:
\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 2 \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) \sin \left( n + \frac{1}{2} \right) = 0
Since \lim_{n \rightarrow + \infty} \sin \left( n + \frac{1}{2} \right) does not exist (it can be proved exactly like number 1), it means that, if this limit: \lim_{n \rightarrow + \infty} \sin (n ^ 2) exists then this limit: \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0 must be true.
But if this limit \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0 is true then: \lim_{n \rightarrow + \infty} \cos \left[ 2 \left( n ^ 2 + n + \frac{1}{2} \right) \right] = \lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right) = \lim_{n \rightarrow + \infty} \cos ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) - \sin ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) = -1 must also be true.
But \cos (\pi + 2k \pi) = -1, \ k \in \mathbb{Z}
Define a sequence {nk}, such that ni = 2i2 + 2i + 1.
Also define a sequence {ux} : u_i \in \mathbb{Z ^ +} such that:
\left| \pi + 2u_i \pi - n_i \right| will return the smallest positive number possible.
That means, as i tends to infinity \left| \pi + 2u_i \pi - n_i \right| must tend to 0.
Assume that's it's true, we have: we can choose a number \epsilon > 0, there will exist some N such that if p > N then:
\left| \pi + 2u_p \pi - n_p \right| = \left| \pi + 2u_p \pi - 2p ^ 2 - 2p - 1 \right| < \epsilon If p > N, then of course p + 1 > N
\left| \pi + 2u_{p + 1} \pi - n_{p + 1} \right|
= \left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| < \epsilon. But we have:
\left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| = \left| \pi + 2u_{p + 1} \pi - 2p ^ 2 - 6p - 5 \right| = \left| (\pi + 2u_p \pi - 2p ^ 2 - 2p - 1) + 2u_{p + 1} \pi - 4p - 4 - 2u_p \pi \right| < \epsilon
Now if \epsilon is very small \pi + 2u_p \pi - 2p ^ 2 - 2p - 1 will tend to 0. To keep the inequality true, 2u_{p + 1} \pi - 4p - 4 - 2u_p \pi = 2 \pi (u_{p + 1} - u_p) - 2p - 4[/tex] must also tend to 0. That means, as p tends to inifity:<br /> 2p + 4 will tend to some multiple of \pi. But that's clearly wrong. So that means this limit:<br /> \lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right)<br /> does not exist. So this limit:<br /> \lim_{n \rightarrow + \infty} \sin (n ^ 2) does not exist either.<br /> Are my steps correct? Is there any other way?<br /> Thanks... :)
So this is not homework.
I have never seen this kind of problem before. I've tried all of them, and so I'm posting for some confirmation from you guys. There are 2 problems in total.
1. Prove the following limit does not exist:
\lim_{n \rightarrow + \infty} \sin (n)
Proof:
There exists infinity n's such that:
\frac{\pi}{6} + 2k \pi < n < \frac{5 \pi}{6} + 2k \pi, \ k \in \mathbb{Z}, it means:
\frac{1}{2} < \sin (n) < 1
There also exists infinity n's such that:
-\frac{5 \pi}{6} + 2k \pi < n < -\frac{\pi}{6} + 2k \pi, \ k \in \mathbb{Z}, it means:
- 1 < \sin (n) < - \frac{1}{2}
So as n tends to infinity, sin(n) can take either value from \left] -1 ; \ - \frac{1}{2} \right[, or \left] \frac{1}{2} ; \ \ 1 \right[. That yields the limit above does not exists.
-----------------
2. Prove the following limit does not exist:
\lim_{n \rightarrow + \infty} \sin (n ^ 2)
Proof:
If that limit exists then:
\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 0
That means:
\lim_{n \rightarrow + \infty} \sin ((n + 1) ^ 2) - \sin (n ^ 2) = 2 \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) \sin \left( n + \frac{1}{2} \right) = 0
Since \lim_{n \rightarrow + \infty} \sin \left( n + \frac{1}{2} \right) does not exist (it can be proved exactly like number 1), it means that, if this limit: \lim_{n \rightarrow + \infty} \sin (n ^ 2) exists then this limit: \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0 must be true.
But if this limit \lim_{n \rightarrow + \infty} \cos \left( n ^ 2 + n + \frac{1}{2} \right) = 0 is true then: \lim_{n \rightarrow + \infty} \cos \left[ 2 \left( n ^ 2 + n + \frac{1}{2} \right) \right] = \lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right) = \lim_{n \rightarrow + \infty} \cos ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) - \sin ^ 2 \left( n ^ 2 + n + \frac{1}{2} \right) = -1 must also be true.
But \cos (\pi + 2k \pi) = -1, \ k \in \mathbb{Z}
Define a sequence {nk}, such that ni = 2i2 + 2i + 1.
Also define a sequence {ux} : u_i \in \mathbb{Z ^ +} such that:
\left| \pi + 2u_i \pi - n_i \right| will return the smallest positive number possible.
That means, as i tends to infinity \left| \pi + 2u_i \pi - n_i \right| must tend to 0.
Assume that's it's true, we have: we can choose a number \epsilon > 0, there will exist some N such that if p > N then:
\left| \pi + 2u_p \pi - n_p \right| = \left| \pi + 2u_p \pi - 2p ^ 2 - 2p - 1 \right| < \epsilon If p > N, then of course p + 1 > N
\left| \pi + 2u_{p + 1} \pi - n_{p + 1} \right|
= \left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| < \epsilon. But we have:
\left| \pi + 2u_{p + 1} \pi - 2(p + 1) ^ 2 - 2(p + 1) - 1 \right| = \left| \pi + 2u_{p + 1} \pi - 2p ^ 2 - 6p - 5 \right| = \left| (\pi + 2u_p \pi - 2p ^ 2 - 2p - 1) + 2u_{p + 1} \pi - 4p - 4 - 2u_p \pi \right| < \epsilon
Now if \epsilon is very small \pi + 2u_p \pi - 2p ^ 2 - 2p - 1 will tend to 0. To keep the inequality true, 2u_{p + 1} \pi - 4p - 4 - 2u_p \pi = 2 \pi (u_{p + 1} - u_p) - 2p - 4[/tex] must also tend to 0. That means, as p tends to inifity:<br /> 2p + 4 will tend to some multiple of \pi. But that's clearly wrong. So that means this limit:<br /> \lim_{n \rightarrow + \infty} \cos \left( 2 n ^ 2 + 2n + 1 \right)<br /> does not exist. So this limit:<br /> \lim_{n \rightarrow + \infty} \sin (n ^ 2) does not exist either.<br /> Are my steps correct? Is there any other way?<br /> Thanks... :)
Last edited: