Proving the Limit of x_n = 1/sqrt(n) as n Approaches Infinity

  • Thread starter Thread starter _Andreas
  • Start date Start date
  • Tags Tags
    Limit
_Andreas
Messages
141
Reaction score
1

Homework Statement



x_n=1/sqrt(n)

Prove that lim x_n = 0 as n approaches infinity

Homework Equations



E > 0

The Attempt at a Solution



There is a natural number N such that N>1/sqrt(E). There is also a number n>N>1/sqrt(E) <==> sqrt(n)>1/sqrt(sqrt(E)) ==> E>sqrt(sqrt(E))>1/sqrt(n). If this last inequality is correct, I can prove the limit in question. But it can't be, because E<sqrt(sqrt(E)) if 0<E<1. So, what should I do instead?
 
Physics news on Phys.org
You've got this all twisted around. You want 1/sqrt(n)<E for n>N. So you want N>1/E^2.
 
Dick said:
You've got this all twisted around. You want 1/sqrt(n)<E for n>N. So you want N>1/E^2.

I see; it's N I'm after. Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top