Kindayr
- 159
- 0
Homework Statement
Let H be a Hilbert space. Prove \Vert x \Vert = \sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert}
The Attempt at a Solution
First suppose x = 0. Then we have \sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert} = \sup_{0\neq y\in H}\frac{\vert (0,y) \vert}{\Vert y \Vert} = \sup_{0\neq y\in H}\frac{\vert 0 \vert}{\Vert y \Vert} = 0 = \Vert 0 \Vert.
Now suppose x \neq 0. Then \Vert x \Vert = \sqrt{(x,x)} = \frac{\sqrt{(x,x)} \cdot \sqrt{(x,x)}}{\sqrt{(x,x)}} = \frac{\vert (x,x)\vert}{\Vert x \Vert} \leq \sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert}.
Now I just can't do the reverse inequality. Any help is much appreciated.