Proving the Relationship Between Perfect Numbers and Harmonic Mean

  • Thread starter Thread starter AlexHall
  • Start date Start date
  • Tags Tags
    Function Harmonic
AlexHall
Messages
7
Reaction score
0
Hi

I have the harmonic mean H(n) of the divisors of a positive integer n. I need to show that if n is perfect number, then H(n) must be an integer.

1/H(n)={1/τ(n)}Σ(1/d)

I have found that

H(n)=nτ(n)/σ(n)
H(n)=τ(n)/2

How can I conclude that this is an integer?

Thank you
 
Physics news on Phys.org
The sum of reciprocals of divisors of a perfect number is always equal to 2 if the number itself is considered as a divisor. If, in your problem it is not, then we have that the sum of reciprocals of proper divisors is equal to 1 and the result is trivial.

If it is the case that the standard divisor function is considered, one needs to show that the number of divisors of a perfect number (including itself) is even, which I haven't been able to prove yet.
 
yasiru89 said:
If it is the case that the standard divisor function is considered, one needs to show that the number of divisors of a perfect number (including itself) is even, which I haven't been able to prove yet.

An even perfect number is of the form 2^(p-1) * (2^p - 1) where 2^p - 1 is prime, so it has 2p divisors.

An odd perfect number is of the form p^(4a+1) * n^2 with gcd(p, n) = 1, so it has an even number of divisors (in fact, the number of divisors is divisible by 2 and not by 4).
 
Oh yeah, Euler's result. There we are then.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top