Proving the Uniqueness of Base Representation for Integers

sty2004
Messages
16
Reaction score
0
base representation please help~

It is known that if asks+as-1ks-1+...+a0 is a representation of n to the base k, then 0<n<=ks+1-1.

Now suppose n=asks+as-1ks-1+...+a0 and m=btkt+bt-1kt-1+...+b0 with as,bt not equal to 0, are two different representations of n and m to base k, respectively. Without loss of generality we may assume t>=s. Without using Theorem 1-3(existance and uniqueness of such representation of an integer), prove directly that m not equal to n.

Many many thanks~~~
 
Physics news on Phys.org


You can try dividing both numbers by ks+1... one quotient will be <1 and the other >=1.

Edit: Oh, I'm sorry. I thought t>s, while you said instead t>=s. In this case I think you need something else, because if t=s, as=bs and all ai,bi are 0 for i<s, then n=m.

Oh, but then again... you said they are different representations. I assume this means that, even if t=s, as and bs cannot be the same. Then, in this case, divide both numbers by max(as,bs) . ks, and that should give you one quotient <1 and another >=1.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top