Pseudorandom integer sequence having at least 15 adjacent differences > 36

  • Thread starter Thread starter tcma
  • Start date Start date
  • Tags Tags
    Integer Sequence
tcma
Messages
1
Reaction score
0
The requirement is to find an pseudorandom integer sequence i0, i1, i2, i3, ... , i48, i49 so that there are at least 15 adjacent differences which are greater than 36.
Code:
Adjacent difference = absolute value of the difference between two adjacent integers
= |i  - i   |  where j = 0 to 49 
  | j -  j+1|
and
 i  =  an integer in the range of [1, 2, 3, ..., 50]
  j
= an integer in the range of [1, 2, 3, ..., 50]

e.g.
For this integer sequence (very poor in randomness)
1 39 2 40 3 41 4 42 5 43 6 44 7 45 8 46 9 47 10 48 11 49 12 50 13 26 14 27 15 28 16 29 17 30 18 31 19 32 20 33 21 34 22 35 23 36 24 37 25 38 i0 = 1
i1 = 39
i2 = 2
i3 = 40
i4 = 3
...
i47 = 37
i48 = 25
i49 = 38

Adjacent difference
|i0 - i1| = |1 - 39| = 38
|i1 - i2| = |39 - 2| = 37
|i2 - i3| = |2 - 40| = 38
|i3 - i4| = |40 - 3| = 37
...
|i23 - i24| = |50 - 13| = 37
|i24 - i25| = |13 - 26| = 13
...
|i46 - i47| = |24 - 37| = 13
|i47 - i48| = |37 - 25| = 12
|i48 - i49| = |25 - 38| = 13

There are 24 adjacent differences which are greater than 36.
Is there an algorithm to find an pseudorandom integer sequence which meet the requirement?
One algorithm I can think of is:
1. Create a not-random integer sequence which has at least 15 adjacent differences which are greater than 36.
e.g. the above integer sequence alternates between a small and large integer
2. Randomlly select two odd-indexed integer.
If swapping them still meet the requirement, then swap them
3. Randomlly select two even-indexed integer.
If swapping them still meet the requirement, then swap them
4. Repeat steps 2 and 3 many times

I will write a computer program to implement this.
Please comment or suggest a better algorithm.
 
Last edited:
Physics news on Phys.org
I suggest the following:
1. Choose 50 numbers at random.
2.Pick up any 15 of them at random & add 36 to each of them.
This ensures the size of the difference, keeping as much randomness as possible.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Replies
3
Views
2K
Replies
7
Views
6K
Replies
16
Views
5K
Replies
7
Views
4K
Replies
6
Views
3K
Replies
1
Views
3K
Replies
19
Views
1K
Back
Top