bayners123
- 29
- 0
The pseudoscalar mesons have J^P = 0^-
They form a nonet: for S = ±1, I (isospin) = 1/2 and so there are two particles for each value of strangeness. This account for 4 particles: the ground-state Kaons.
For S=0, I can be 0 or 1. I=1 gives a triplet: \pi^\pm \mbox{ and } \pi^0.
For S=0 and I = 0 however there are two particles: the \eta \mbox{ and the } \eta^\prime
As far as I can see the eta and the eta prime have exactly the same characteristics. My question is: why is there an eta prime? All the other mesons seem justified by the quark model. Why are there two I^CJ^P = 0^+0^- particles and what distinguishes them?
They form a nonet: for S = ±1, I (isospin) = 1/2 and so there are two particles for each value of strangeness. This account for 4 particles: the ground-state Kaons.
For S=0, I can be 0 or 1. I=1 gives a triplet: \pi^\pm \mbox{ and } \pi^0.
For S=0 and I = 0 however there are two particles: the \eta \mbox{ and the } \eta^\prime
As far as I can see the eta and the eta prime have exactly the same characteristics. My question is: why is there an eta prime? All the other mesons seem justified by the quark model. Why are there two I^CJ^P = 0^+0^- particles and what distinguishes them?