1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Pulley and Truss System

  1. Mar 4, 2009 #1
    1. The problem statement, all variables and given/known data

    http://g.imagehost.org/0110/nub.jpg [Broken]

    Total tank weight (with liquid) is around 3.1kips
    Lateral load on wall is defined as 6kips[1-(Faxial/6kips)]^2
    Faxial is defined as the axial force along a wall -- maximum allowable is 6kips
    Maximum allowable force in any truss member is 7.5kips

    Joint B is on a pin support, and Joint A is on a roller support.

    I need to plot a graph of axial vs. lateral load on the wall, given an x value range from 20 to 50ft.

    2. Relevant equations

    None. This is an FBD balancing problem.

    3. The attempt at a solution

    I imagined that there is a member extending from point D on the truss to the center of the pulley. Looking at the pulley alone, there should be two forces (horizontal and vertical) acting at the center in order to cancel out the tension applied in the rope. These two forces would be represented by:

    T*sin(theta) + W = Y and T*cos(theta) = X

    Where T is the tension in the rope from the pulley to point E, W is the weight of the tank, and theta is the angle of elevation of the rope. Theta can be defined as:

    theta = arctan(20/x)

    The horizontal component on the center of the pulley could be equivalent to the horizontal force acting on joint D (in both directions) because the rod connecting the center of the pulley to point D is stationary. Taking this into account, the lateral load on the wall at point B should be equivalent to the following:

    T*cos(theta)

    Is this the right way of going about this problem? I need to somehow relate x to the lateral and axial loads on the walls in order to compile a program script that could graph what is required.
     
    Last edited by a moderator: May 4, 2017
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Pulley and Truss System
  1. Pulley System (Replies: 0)

Loading...