QFT books that discuss Infra-red dimensional regularization?

petergreat
Messages
266
Reaction score
4
I learned QFT by reading Peskin & Schroeder, and now find myself unfamiliar with dimensional regularization of IR divergences which is prevalent in the literature. Are there good QFT books which discusses IR dim. reg.? I understand the general idea of going to more than 4 dimensions as opposed to less than 4 dimensions for UV regularization, but I want to see explicitly worked out examples.
 
Physics news on Phys.org
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Replies
4
Views
3K
Replies
1
Views
1K
Replies
4
Views
4K
Replies
10
Views
2K
Replies
1
Views
2K
Replies
2
Views
3K
Replies
4
Views
2K
Replies
14
Views
12K
Replies
23
Views
10K
Back
Top