MHB Quadratic application question what was the jets speed from Bangkok to Tokyo

AI Thread Summary
The discussion centers on a quadratic application problem involving a jet's speed from Bangkok to Tokyo, with a distance of 4800 km and a return speed reduced by 200 km/h. The key equations derived relate time, distance, and speed, leading to the quadratic equation v^2 + 200v - 480000 = 0. The solution reveals that the jet's speed from Bangkok to Tokyo is 600 km/h, as the negative root is discarded due to the requirement for positive speed values. Clarifications were made regarding the correct formulation of the speed equations and the interpretation of the roots. The final conclusion confirms the jet's speed as 600 km/h.
Wild ownz al
Messages
30
Reaction score
0
Hey this Quadratic application question is giving me trouble.

A jet flew from Tokyo to Bangkok, a distance of 4800km. On the return trip, the speed was decreased by 200km/h. If the difference in the times of the flights was 2 hours, what was the jets speed from Bangkok to Tokyo?

Just need the formula for the Jets speed and I should be fine with the rest.

This was my guess: 4800 = (x-200)(-2x)
 
Mathematics news on Phys.org
Wild ownz al said:
Hey this Quadratic application question is giving me trouble.

A jet flew from Tokyo to Bangkok, a distance of 4800km. On the return trip, the speed was decreased by 200km/h. If the difference in the times of the flights was 2 hours, what was the jets speed from Bangkok to Tokyo?

Just need the formula for the Jets speed and I should be fine with the rest.

This was my guess: 4800 = (x-200)(-2x)

Hello, and welcome to MHB! (Wave)

I've moved your question to its own thread.

I would use the fact that time is distance per average speed. Let distances be measured in km and time in hrs. Let \(v\) be the plane's speed from Bangkok to Tokyo.

$$t-2=\frac{4800}{v+200}$$

$$t=\frac{4800}{v}$$

Now, these equations imply:

$$t=\frac{4800}{v+200}+2=\frac{4800}{v}$$

Multiply through by \(v(v+200)\):

$$4800v+2v(v+200)=4800(v+200)$$

Distribute after dividing through by 2, then collect like terms and arrange in standard form:

$$v^2+200v-480000=0$$

Factor:

$$(v+800)(v-600)=0$$

Discarding the negative root, we find:

$$v=600$$

Does this make sense?
 
AMAZING you are brilliant. Thank you :)
 
Wild ownz al said:
AMAZING you are brilliant. Thank you :)

If the plane's speed is "decreased" by 200km/h then shouldn't it be (v - 200) instead of (v + 200)?

Also if you ended up with two roots how do you know which one is the planes speed?
 
Wild ownz al said:
If the plane's speed is "decreased" by 200km/h then shouldn't it be (v - 200) instead of (v + 200)?

The first equation represents the first leg of the journey, from Tokyo to Bangkok. But, \(v\) represents the speed on the second leg, the return trip, where the speed has been decreased by 200. And so the speed on the first leg must be \(v+200\).

Wild ownz al said:
Also if you ended up with two roots how do you know which one is the planes speed?

Speed, in order to have any meaning, must be positive (it is a magnitude like distance), and so we discard the negative root.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top