A Quantization isn't fundamental

  • #121
Jimster41 said:
I assume you knew his site existed (an on-line version of the book). I just found it but I'm a bit afraid to post the link here. I think I will have to own the actual book tho...
Whose book is online?
DarMM said:
It more highlights an interesting possibility, that you might need an unmeasurable space and those are never really looked at.
Now this is indeed an intriguing possibility.
DarMM said:
Sorry, but you really think most of the no-go theorems are nonsense that's as useful as saying "physics uses numbers"?
I was being a bit derisive of them, they clearly aren't mere nonsense, but I would say that you yourself are making light of the statement that physics uses numbers; the fact that physics uses real numbers and complex numbers is quite profound in its own right, perhaps more so than the state space being measurable.

My point is that no-go theorems which are about theories instead of about physical phenomena aren't actually theorems belonging to physics, but instead theorems belonging to logic, mathematics and philosophy; see e.g. Gleason's theorem for another such extra-physical theorem pretending to be physics proper.

There is no precedent whatsoever within the practice of physics for such kind of theorems which is why it isn't clear at all that the statistical utility of such theorems for non-empirical theory selection is actually a valid methodology, and there is a good reason for that; how would the sensitivity and specificity w.r.t. the viability of theories be accounted for if the empirically discriminatory test is a non-empirical theorem?

It is unclear whether such a non-empirical tool is epistemologically - i.e. scientifically - coherently capable of doing anything else except demonstrating consistency with unmodified QM/QFT. If this is all the theorems are capable of, sure they aren't useless, but they aren't nearly as interesting if QM is in fact in need of modification, just like all known theories in physics so far were also in need of modification.

Physics is not mathematics, philosophy or logic; it is an empirical science, which means that all of this would have to be answered before advising or encouraging theorists to practically use such theorems in order to select the likelihood of a theory beyond QM in such a statistical manner. To put it bluntly, scientifically these theorems might just end up proving to be 'not even wrong'.
DarMM said:
If not could you tell me which are?
I'll get back to this.
DarMM said:
Also I still don't understand how it is necessarily epistemic. A measurable space might be put to an epistemic use, but I don't see how it is intrinsically so.
If some necessary particular mathematical ingredients such as geometric or topological aspects are removed, physical content may be removed as well; what randomly ends up getting left may just turn out to be irrelevant fluff, physically speaking.
DarMM said:
So your main objection to the framework is that it might unfairly eliminate a model in the early stages of development? In other words, an earlier simpler version of an idea might have some interesting insights, but it's early form, being susceptible to the no-go theorems, might be unfairly dismissed without being given time to advance to a form that doesn't and might help us understand/supersede QM?
Partially yes, especially given the lack of precedent for using theorems (which might belong more to mathematics or to philosophy instead of to physics) in such a non-empirical statistical selection procedure.
Twodogs said:
This is an intriguing proposition. As noted, self-organizing dynamics occur on a myriad of scales, are robust and have an extensive mathematical basis. Speaking with a very superficial understanding, it feels organic rather than mechanistic and potentially rooted in a new foundational paradigm. Having just read something about Bohmian mechanics it feels like the two might go together.
There seems to be at least one link with BM, namely that Manasson's model seems to be fully consistent with Nelson's fully Bohmian program of stochastic electrodynamics.
 
Physics news on Phys.org
  • #122
To get back to this:
DarMM said:
It more highlights an interesting possibility, that you might need an unmeasurable space and those are never really looked at.
I said earlier that that was an intriguing possibility, but this is actually my entire point: monkeying with the topology and/or the fractality of (a subset of a) space may influence its measurability.

Therefore prematurely excluding theories purely on the basis of their state spaces being (or locally seeming) measurable, is in theoretical practice almost guaranteed to lead to a high degree of false positive exclusions.
 
  • Like
Likes Jimster41
  • #123
I agree that beeing "measurable" is a key topic in this discussion. In particular to consider the physical basis of what beeing measureable is. In a probabilistic inference the measure is essential in order to quantify and rate empirical evidence. This is essential to the program, so i would say that the insight is not to release ourselves from requirements of measurability, that would be a mistake in the wrong direction. I think they insight must be that what is measurable relative to one observer, need not be measurable with respect to another observers. This all begs for a new intrinsic framework for probabilistic inference, that lacks global or observer invariant measures.

If we think about how intrinsic geometry originated from asking how a life form not beeing aware of en embedding geometry can infer geometry from local experiments within the surface; and translate that to asking how an information processing agent not beeing aware of the embedding truth, can infer things from incomplete knowledge confined only to its limited processing power: What kind of mathematics will that yield us? Then let's try to phrase or reconsturct QM in these terms. note this this would forbid things like infinite ensembles or infinite repeats of experiments. It will force us to formulate QM foundations with the same constraints we live with for cosmological theories.

A side note: Merry Christmas :)

/Fredrik
 
  • Like
Likes Auto-Didact
  • #124
Auto-Didact said:
The author convincingly demonstrates that practically everything known about particle physics, including the SM itself, can be derived from first principles by treating the electron as an evolved self-organized open system in the context of dissipative nonlinear systems. Moreover, the dissipative structure gives rise to discontinuities within the equations and so unintentionally also gives an actual prediction/explanation of state vector reduction, i.e. it offers an actual resolution of the measurement problem of QT

Unless I seriously missed something in that article, it isn't very convincing at all. In particular, he describes this self organization as a self organization of the vacuum. However, without quantum field theory, you have nothing which defines a vacuum state and nothing to self organize.
 
  • #125
bobob said:
In particular, he describes this self organization as a self organization of the vacuum. However, without quantum field theory, you have nothing which defines a vacuum state and nothing to self organize.
The author - without planning to do so - makes a (seemingly) unrelated mathematical argument based on a clear hypothesis and then spontaneously goes on to derive the complete dynamical spinor state set i.e. the foundation of Dirac theory from first principle by doing pure mathematics in state space based on purely empirical grounds.

Quantum field theory, despite being the original context in which vacuum states were predicted theoretically and discovered experimentally, certainly isn't the only possible theory capable of describing the vacuum.

After experimental discovery has taken place, theorists are free to extend the modelling of any emperically occurring phenomenon using any branch of mathematics which seems fit to do so: this is how physics has always worked.

For the vacuum this proliferation of models has already occurred, i.e. the vacuum isn't a unique feature of QFT anymore; any theory aiming to go beyond QFT has to describe the vacuum as part of nature; how it does so depends on the underlying mathematics.
 
  • #126
Auto-Didact said:
For the vacuum this proliferation of models has already occurred, i.e. the vacuum isn't a unique feature of QFT anymore; any theory aiming to go beyond QFT has to describe the vacuum as part of nature; how it does so depends on the underlying mathematics.
Sure, but the vacuum belonging to a theory must be part of that particular theory. I really do not see where the paper develops the "stuff" (for want of a better word) from which anything self organizes. One cannot discuss self organizing without in some way, defining what it is that is self organizing, what it's properties are, etc. The author's aims are not to go beyond qft, but to replace it, given that the thrust is that quantization isn't fundamental. In qft, quantization is fundamental.
 
  • #127
bobob said:
I really do not see where the paper develops the "stuff" (for want of a better word) from which anything self organizes.
He describes the process of how the equation should look qualitatively; doing this is standard methodology in dynamical systems research. This is because of the prototypicality of types of equations for their class, especially given Feigenbaum universality which he also derives from his Ansatz.
bobob said:
One cannot discuss self organizing without in some way, defining what it is that is self organizing, what it's properties are, etc.
He posits that the vacuum field, an experimentally established phenomenon, has inner dynamics which makes it self-organizing. Establishing the mathematical properties of this dynamical system is at this stage more important than establishing the actual equation; moreover, his argument is so general that it applies to any equation in this class, if they exist.
bobob said:
The author's aims are not to go beyond qft, but to replace it, given that the thrust is that quantization isn't fundamental.
'Going beyond' and 'replacing' are often used as synonyms in this context. For example, GR went beyond Newtonian theory and replaced it; arguing this point any further is purely a discussion on semantics.

The point is that any kind of vacuum field - fully of a purely QFT type or otherwise - assuming it has a particular kind of internal dynamics, automatically seems to reproduce Dirac theory, SM particle hierarchy & symmetry groups, coupling constants and more; if anything this sounds too good to be true.
 
  • #128
I left out this bit in the previous post:
bobob said:
In qft, quantization is fundamental.
The core idea is that a vacuum field with a particular kind of internal dynamics, has necessarily a particular state space with special kinds of attractors in it, which will automatically lead to a display of quantized properties for any system in interaction with this field, i.e. for particles; this makes the experimentally determined quantum nature of particles, their properties, orbits and possibly even their very existence, fully an effect of always being in interaction with the vacuum field.
 
  • #129
It might be useful to look at self-organizing systems in their better-known habitat. There are 350-some genes and certain cell functions that are present in every living thing on earth, plant and animal. Biologists have triangulated their origin back three billion years to a hypothetical single celled organism identified as the “last universal common ancestor,” (LUCA). So here is a dissipative dynamical system that has not only long endured, but radically extended its phase space.

Is there a LUCA analogue for physics? Is there a dynamical seed from which all else follows? It would needs be an iterative process with a timeline rather than a one-off event. Note that, in an iterative process the distinction between cause and effect and the notion of retro-causality become less meaningful. Can one identify the fundamental origin of iterative processes?
 
  • #130
Twodogs said:
It might be useful to look at self-organizing systems in their better-known habitat. There are 350-some genes and certain cell functions that are present in every...
I agree that physicists has a lot to learn from analyzing evolution on life. What are the analogies to "laws", "observers" and "experiments" in the game of life?
Twodogs said:
Can one identify the fundamental origin of iterative processes?
I think this is a good thought, and this is something I've been thinking about for quite some time, but what will happen is something like this:

You need mathematical abstractions of observers and their behavior which correspond to "lifeforms". Then ponder about the mechanisms for these abstractions to interact and to be each others enviroment. Then try to see how total theory space can be reduced in complexity and the origin of things?

The phase i am currently in is abstractions that are like interacting information processing agents and dna of law can be thought of as the computational code that determines the dices that are used to play. But each dice is fundamentally hidden to other agents whose collective ignorance supports acting as if they did not exist so that is does not quailfy as a hidden variable model. Agents also has intertia associated to the codes. This is how volatile codes can easily mutate but inertial ones not.

No matter how conceptually nice there is a huge gap from this toy model to making contact to low energy physics as we know it.

Conceptually the abstrations here are at the highest possible energyscale. But they trick to avoid getting lost in a landscape of possible high energy models - given the low energy perspective, is to also consider the observer to be in the high energy domain - not in the low energy lab frame from which we normally do scattering statistis in qft.

Noone is currently interested in toy models along these lines though, this ia why the "activation enegy" for this approach to publish something that normal physicists can relate to is huge.

Perhaps if there was a new discipline in this direction there would be a community for partial progress to see the light.

/Fredrik
 
  • #131
Twodogs said:
It might be useful to look at self-organizing systems in their better-known habitat. There are 350-some genes and certain cell functions that are present in every living thing on earth, plant and animal.
Last time I checked (~2010), the mathematics behind this (i.e. evolution by natural selection) hadn't been properly straightened out yet apart from gross simplified models which weren't necessarily generalizable. If it has been worked out, the analogy might be clearer.
Twodogs said:
Is there a LUCA analogue for physics? Is there a dynamical seed from which all else follows?
The author of this model proposes that there is a LUCA for the next two generations of fermions, with the vacuum field being the ancestor to all. There is an illustration of this in the paper (Figure 1). I'm sure in high energy particle physics there are tonnes of models which have such structure.
Twodogs said:
It would needs be an iterative process with a timeline rather than a one-off event.
Actually a one-off time event is sufficient, given the fundamentality of the system: if a universe exists with nothing else but a dynamical vacuum field, any perturbation of this field capable of causing feedback to the field could lead to the scenario the author describes. The existence of the dynamical field alone then already fully determines the state space of the vacuum including all its attractors.
Twodogs said:
Can one identify the fundamental origin of iterative processes?
I see no reason why not, precisely because they can be fitted to mathematical models of iteration and then the origin can be worked out by studying the model.
 
Last edited:
  • #133
Auto-Didact said:
α=(2πδ2)≅1/137
Hi AD:

I found the following value for δ:
This gives
α = 2πδ2 ~= 136.98 .​
This is ~= 1/α rather than ~= α.

Might you have a typo? Perhaps you should have
α = 1/ 2πδ2 .​

ADDED
What is the physics implication of the approximation error of ~0.06 in 1/α using the formula with δ.

Regards,
Buzz
 
Last edited:
  • #134
Buzz Bloom said:
Hi AD:

I found the following value for δ:
This gives
α = 2πδ2 ~= 136.98 .​
This is ~= 1/α rather than ~= α.

Might you have a typo? Perhaps you should have
α = 1/ 2πδ2 .​

Regards,
Buzz
yeah, it is a typo, should've been $$\alpha = (2\pi\delta^2)^{-1} \cong \frac {1} {137}$$I immediately wrote up and posted this thread from my smartphone directly after I finished reading the paper, without checking the (LaTeX) equations.

I actually spotted this typo when I reread the thread for the first time later that day after I had posted it, but I couldn't edit it anymore.
 
  • #135
Buzz Bloom said:
ADDED
What is the physics implication of the approximation error of ~0.06 in 1/α using the formula with δ.
My first hunch would be that this numerical discrepancy arises from the existence of an imperfection parameter in addition to the bifurcation parameter, i.e. the proper level of analysis for addressing the numerical error is by using the methods of catastrophe theory to study cusps in the surface in the higher dimensional parameter space consisting of the state ##\psi##, a bifurcation parameter ##r## and an imperfection parameter ##h##.
 
  • Like
Likes Buzz Bloom
  • #136
Thanks, I appreciate your response.

"Last time I checked (~2010), the mathematics behind this (i.e. evolution by natural selection) hadn't been properly straightened out yet apart from gross simplified models which weren't necessarily generalizable. If it has been worked out, the analogy might be clearer."

The need for scientific rigor is understood, but still a phenomenon may be real without an exacting mathematical description. In the case of LUCA, I believe there is a shovel-worthy trail of bread crumbs leading to its approximation.

"Actually a one-off time event is sufficient, given the fundamentality of the system: if a universe exists with nothing else but a dynamical vacuum field, any perturbation of this field capable of causing feedback to the field could lead to the scenario the author describes. The existence of the dynamical field alone then already fully determines the state space of the vacuum including all its attractors."

This is interesting. I don’t want to waste your time, but I have questions. You present what I take to be a schematic of a kind minimal, prototypical universe and identify its necessary ingredients. Setting them on the lab bench we have a dynamical vacuum field, a perturbation and its associated feedback.

I read that fields were the first quantities to emerge from the initial flux and they seem like elegant dynamical constructs to arise at a time of maximal stress unless strongly driven by an underlying principle.

And feedback itself is not a given in an outwardly dispersing wave impulse without a displacement constraining boundary condition. Where does that arise?

For reasons above, are the dynamics of quantum fields an ‘integrative level’ of description that arises from the phenomena of a lower level?

This is a rather large question, but it does affect the substrate upon which Manasson’s model would be operating.
Thanks,
 
  • #137
Twodogs said:
I read that fields were the first quantities to emerge from the initial flux and they seem like elegant dynamical constructs to arise at a time of maximal stress unless strongly driven by an underlying principle.
I'm not too keen on speculating when exactly the scenario which the author describes might have occurred; without giving explicit equations, anything going further than just stating that the author's picture is mathematically consistent seems to me to be baseless speculation.
Twodogs said:
And feedback itself is not a given in an outwardly dispersing wave impulse without a displacement constraining boundary condition. Where does that arise?
Due to the conservative nature of the initially chargeless field itself, any fluctuation which has a non-neutral charge will lead to a polarization of the charge of the surrounding field into the opposite end; this balancing act is limited by the speed of light and therefore will lead to interaction between the charges, i.e. feedback.
Twodogs said:
For reasons above, are the dynamics of quantum fields an ‘integrative level’ of description that arises from the phenomena of a lower level?
If by 'an integrative level of description' you mean 'emergent from underlying mechanics', then the answer is yes.
 
Last edited:
  • #138
Hi, not having read everything here, but would any possible results from the tests proposed by Bose et al. and Marletto and Vedral for gravitationally induced entanglement likely pose any problems for this picture?
 
  • #139
*now* said:
Hi, not having read everything here, but would any possible results from the tests proposed by Bose et al. and Marletto and Vedral for gravitationally induced entanglement likely pose any problems for this picture?
The model as constructed only incorporates forces under the SM.

Suffice to say it might be generalizable to include gravitation, but that would probably make the model less natural, e.g. modifying the correspondence between the three generations of known particles and bifurcations as well as predict a wrong gravitational coupling constant.
 
  • Like
Likes *now*
  • #140
Auto-Didact said:
Suffice to say it might be generalizable to include gravitation, but that would probably make the model less natural, e.g. modifying the correspondence between the three generations of known particles and bifurcations as well as predict a wrong gravitational coupling constant.

Ok, thanks very much for the interesting response, Auto-Didact.
 
  • #141
Auto-Didact said:
If by 'an integrative level of description' you mean 'emergent from underlying mechanics', then the answer is yes.

Thank you for wading through my questions. Regarding your answer above, where would I find a description of the ‘underlying mechanics’ from which quantum fields are ‘emergent?’ Do you mean their mathematical description or something 'deeper'?
 
  • #142
I have been giving the bifurcation aspect of this model a bit more thought: locally, period doubling bifurcations are supercritical pitchfork bifurcations, with the visual aspect of the 'pitchfork' clear upon inspection of the bifurcation diagram; this implies that there is some symmetry in the governing equation behind the dynamics of this vacuum polarization. What on Earth is this symmetry, physically speaking?
Twodogs said:
Thank you for wading through my questions. Regarding your answer above, where would I find a description of the ‘underlying mechanics’ from which quantum fields are ‘emergent?’ Do you mean their mathematical description or something 'deeper'?
I mean something deeper: a mathematical description of some more fundamental dynamics of vacuum fluctuations which reduces in some particular limit to the equations of QFT. As far as I know, no one has ever succeeded in doing such a thing yet.

In other words, I am explicitly saying that this is an outstanding open problem in mathematical physics: identify through (trial-and-error) construction a unique nonlinear generalization of QFT which fully and non-perturbatively describes the dynamics of vacuum fluctuations as a dissipative process and at the same time has standard QFT as a well-defined limit.
 
  • #143
*now* said:
Ok, thanks very much for the interesting response, Auto-Didact.
Due to my contemplations in the previous post, I just reread the paper and now see that I missed something crucial in my answer to you: in section V, Figure 8d (pg. 8) the author shows that the simplest version of the model implies the existence of a spin-2 particle i.e. possibly the graviton, but he doesn't speculate any further. Moreover, the author explicitly states in the end of section VI that the model is a space-time independent framework.
 
  • Like
Likes *now*
  • #144
Auto-Didact said:
Due to my contemplations in the previous post, I just reread the paper and now see that I missed something crucial in my answer to you: in section V, Figure 8d (pg. 8) the author shows that the simplest version of the model implies the existence of a spin-2 particle i.e. possibly the graviton, but he doesn't speculate any further. Moreover, the author explicitly states in the end of section VI that the model is a space-time independent framework.
Your observations do seem crucial and more interesting, thanks Auto-Didact.
 
  • Like
Likes Auto-Didact
  • #145
Auto-Didact said:
I mean something deeper: a mathematical description of some more fundamental dynamics of vacuum fluctuations which reduces in some particular limit to the equations of QFT. As far as I know, no one has ever succeeded in doing such a thing yet.

In other words, I am explicitly saying that this is an outstanding open problem in mathematical physics: identify through (trial-and-error) construction a unique nonlinear generalization of QFT which fully and non-perturbatively describes the dynamics of vacuum fluctuations as a dissipative process and at the same time has standard QFT as a well-defined limit.

A few, perhaps erroneous, observations:

1) The notion of particles being dissipative dynamical structures as opposed to some sort of steady state systems is a major shift of paradigm. I will have to read more to understand the mechanism for that dissipation.

2) Philip Anderson’s emergence in a nut-shell: “This, then, is the fundamental philosophical insight of twentieth century science: everything we observe emerges from a more primitive substrate, in the precise meaning of the term “emergent”, which is to say obedient to the laws of the more primitive level, but not conceptually consequent from that level”. “More is Different” – Anderson (1995, p. 2020)

3) It would seem that identifying the equations that describe ‘a unique nonlinear generalization of QFT’ would first require a characterization of the ‘more primitive substrate’ within which their dynamics would arise and sustain. In other words, the soil must suit the seed. Is that the case?

4) Upon the emergence of phenomenologically new dynamics, those of the ‘more primitive substrate’ continue to serve as their dynamical foundation.

5) I am curious to know if there is an axiomatic approach to characterizing the dynamical substrate in which self-organizing, dissipative systems could arise.

Thanks.
 
  • #146
Agree with 1) and 2).
Twodogs said:
3) It would seem that identifying the equations that describe ‘a unique nonlinear generalization of QFT’ would first require a characterization of the ‘more primitive substrate’ within which their dynamics would arise and sustain. In other words, the soil must suit the seed. Is that the case?

4) Upon the emergence of phenomenologically new dynamics, those of the ‘more primitive substrate’ continue to serve as their dynamical foundation.
3) Yes, the substrate would have to be identified; this is certainly possible and actually there are already many existing sub-particle theories (such as strings or loops) which can readily be tried.

The really nice thing however is that a macroscopic formulation, based on a purely statistical or continuum (e.g. hydrodynamic) treatment, may lend itself through the utilization of theorems and techniques to a (physically) completely generic but mathematically essentially correct microscopic formulation.

4) Yes. Moreover, the author, Manasson, has in fact offered a tentative toy model of the proposed dynamical substrate for the vacuum field himself in his 2017 paper (see here a few posts back).

In his toy model, Manasson proposes that the vacuum consists of dust particles, themselves either essentially infinitesimal (a la Cantor dust) or roughly Planck length sized. On the characteristic scale in question - i.e. the scale of particle physics - these dust particles form a fluid: the vacuum.

This vacuum fluid has self-aggregational and self-diffusive properties, which means that 'temperature' or heat differences will spontaneously lead to the formation of convective vortex cells; vortex cells with a higher than average dust influx are positively charged, higher than average dust efflux negatively charged and zero average dust flux neutrally charged.

Using a network theoretic formulation, Manasson then demonstrates how the collective dynamics of such discrete charged vortex cells is capable of essentially reproducing all of quantum statistics, perhaps without entanglement, at least not explicitly. In particular, he effortlessly goes on to derive both Fermi-Dirac and Bose-Einstein statistics, as well as all all known Standard Model interactions directly from this toy model.
Twodogs said:
5) I am curious to know if there is an axiomatic approach to characterizing the dynamical substrate in which self-organizing, dissipative systems could arise.
5) If by axiomatic approach you mean purely formally i.e. giving proofs based on axioms, then I urge you to read this.

On the other hand, if you just meant a purely mathematical general characterization, then yes, of course. This has been achieved for thermodynamics, condensed matter theory and fluid mechanics and is still active research in countless other fields, from chemistry, to biology, to economics; it is one of the main research directions in nonlinear dynamics, non-equilibrium statistical mechanics and complexity theory.
 
  • #147
Very much appreciate your taking time to reply. Will reflect...
 
  • #148
Fra said:
The phase i am currently in is abstractions that are like interacting information processing agents and dna of law can be thought of as the computational code that determines the dices that are used to play. But each dice is fundamentally hidden to other agents whose collective ignorance supports acting as if they did not exist so that is does not quailfy as a hidden variable model. Agents also has intertia associated to the codes. This is how volatile codes can easily mutate but inertial ones not.

Here the notion of a game space resonates for me. Once one sees something it is difficult to un-see it. And so, despite the incredible breadth and cognitive density of current physical theory, I am left with a very improbable proposition.

Improbable Proposition:

There is a foundational principle implicit in our physical theory that is not fully recognized as such because it is formulaically treated in a myriad of case-by-case instances rather than seen as a general, overarching principle. It would both simplify and deepen our understanding of the universe’s foundational game-space were we to identify this principle and recognize its implications.

As slender props of this notion we note that Neils Bohr placed the yin/yang symbol on his coat of arms with the Latin motto, “Contraria Sunt Complementa," – opposites are complementary". Edward Teller wrote: "Bohr was the incarnation of complementarity, the insistence that every important issue has an opposite side that appears as mutually exclusive with the other. The understanding of the question becomes possible only if the existence of both sides is recognized".

And from David Bohm, we have a characterization of views: The universe is an "undivided wholeness" with everything in a state of process or becoming, a "universal flux" which is not static, but rather a dynamic interconnected process. There is no ultimate set of separately existent entities, out of which all is supposed to be constituted. Rather, unbroken and undivided movement is the primary notion. Movement gives shape to all forms and structure gives order to movement, and a deeper a more extensive inner movement creates, maintains, and ultimately dissolves structure".

So, here’s the question. In a very coarse-grain, cartoon sketch of our physics, leaving out 99% of the detail we would see energy as the principal player. For the sake of narrative interest, to make it more of a game, can we identify energy’s ‘counterpoise’, what’s on the other side of the net, its ‘opposable thumb?’

I would appreciate your thoughts on this.
 
  • #149
Twodogs said:
And from David Bohm, we have a characterization of views: The universe is an "undivided wholeness" with everything in a state of process or becoming, a "universal flux" which is not static, but rather a dynamic interconnected process. There is no ultimate set of separately existent entities, out of which all is supposed to be constituted. Rather, unbroken and undivided movement is the primary notion. Movement gives shape to all forms and structure gives order to movement, and a deeper a more extensive inner movement creates, maintains, and ultimately dissolves structure".

Correction:
And from David Bohm, we have a characterization of his views: "The universe is an "undivided wholeness" with everything in a state of process or becoming, a "universal flux" which is not static, but rather a dynamic interconnected process. There is no ultimate set of separately existent entities, out of which all is supposed to be constituted. Rather, unbroken and undivided movement is the primary notion. Movement gives shape to all forms and structure gives order to movement, and a deeper a more extensive inner movement creates, maintains, and ultimately dissolves structure". (emphasis mine)
 
  • #150
Twodogs said:
...
So, here’s the question. In a very coarse-grain, cartoon sketch of our physics, leaving out 99% of the detail we would see energy as the principal player. For the sake of narrative interest, to make it more of a game, can we identify energy’s ‘counterpoise’, what’s on the other side of the net, its ‘opposable thumb?’

I would appreciate your thoughts on this.
Your question and the matter is naturally fuzzy and easy to misinterpret, but given that disclaimer i can make sense of what you write, and the answer to your question from my perspective is loosely this:

As we learned from relativity, mass, inertia and energy are related in that mass is simlply a form of confined / trapped / bound energy, where the confinement usually refers to the 3D space.

Further in my views I associate structures in conditional bayesian information and probabilities with "energy" and "inertia". In information perspectives, inertia is simlpy the "amount" of evidence pointing in a certain direction, this is "confined" to the observers "subsystem", and in my view are bound to someone relted to inertia and mass. Temperatuire here is simply a kind of information divergence. You can with toy models play around with this, and notice mathematical similarities with stat mech models and heat dissipation, and models for information disspiation. But once you combine systems of non-commutative information processing systems, you have lots of opportunity to map this into the structure of physics and its laws.

So in this perspect i would say energy loosely related to "amount of evidence", which is dependent on a structure able to encode it and the opposite is this "lack of evidence", or lack of complexions. This is why i think self organisation also is related to the origin on mass and energy. So energy is not a "thing", is somehow a measure of "relational" information storage. This is a conceptual fuzzy answer.

The precise mathematical answer requires nothing less that actually completing this research program.

Edit: forgot a point. In the new perspective i paint above, the confinement does not refer to 3D space as space does not yet exist in this level of the vision. Instead spacetime and the dimensionality must be emergent as evolved self-organised relations between the interacting encoding structures. So before that happens, the confinement i more tinkg of as existing in an abstract space indexed by the observers identity. Where two observers that have the SAME information with same confidence, by definition ARE the same (indistinguishable). So "distance" and space emerges from disagreement, and along with disagreement follows "interactions" to counter them, and in all this the laws of interactions are encoded - or so goes the idea.

/Fredrik
 
Last edited:

Similar threads

  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
26
Views
5K
  • · Replies 21 ·
Replies
21
Views
5K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
62
Views
10K