I Quantum Computing and Superposition of states

eprparadox
Messages
133
Reaction score
2
I'm watching a lecture on the intro to quantum computing.

See the attached image which will be useful as I describe my question.

So the professor says that we have this single photon and it's in this state, ## | 0 > ##.

He states that when we send this photon through a beam splitter that it will (assuming we're not doing any sort of measurement), end up in a superposition state of

\frac{1}{\sqrt{2}}( |0> + |1>)

If you look at beam splitter 1 (BS1) in the image, you'll see the incoming photon in state ## |0> ## and two outgoing states, ## |0> ## to the right and ## |1>## up.

My question is this: considering this superposition state, does it even make sense to think about these two different paths? Or is EACH outgoing path through BS1 this same superposition state of

\frac{1}{\sqrt{2}}( |0> + |1>)

Put another way, should I basically think about the beamsplitter as this black box that takes an input and just outputs a single superposition state into the next beam splitter?

Thanks a lot.
 

Attachments

  • Screen Shot 2018-06-07 at 1.18.24 PM.png
    Screen Shot 2018-06-07 at 1.18.24 PM.png
    8.4 KB · Views: 663
Physics news on Phys.org
eprparadox said:
I'm watching a lecture on the intro to quantum computing.

[]

My question is this: considering this superposition state, does it even make sense to think about these two different paths? Or is EACH outgoing path through BS1 this same superposition state of

\frac{1}{\sqrt{2}}( |0> + |1>)

Put another way, should I basically think about the beamsplitter as this black box that takes an input and just outputs a single superposition state into the next beam splitter?

Thanks a lot.
A quantum beam splitter has two input channels and two output channels. The diagram looks wrong. One of the inputs is being assumed and you need to know what it is.

See the 'Quantum Description' section here https://en.wikipedia.org/wiki/Beam_splitter#Quantum_mechanical_description
 
It may help here if you think of a photon as of a classical wave. Then a superposition of the states is just a sum of two waves - one going right and another going up. So the superposition applies to the "global" state, considering both paths, but if you want to consider somehow the state along one path, it is not a superposition (in this particular experiment), but either |0> or |1>.
 
MichPod said:
It may help here if you think of a photon as of a classical wave. Then a superposition of the states is just a sum of two waves - one going right and another going up. So the superposition applies to the "global" state, considering both paths, but if you want to consider somehow the state along one path, it is not a superposition (in this particular experiment), but either |0> or |1>.

Thanks @MichPod. I still have some confusion about these outbound paths that he labled |0> and |1>. Those paths are only really defined if we actually MAKE a measurement correct? That is, if we setup a detector that tries to detect which outbound path the photon is coming from, THEN we will have these paths as |0> and |1>. Is that correct?

And then second question: in the case where we don't try and detect the path, then as you said it's this superposition. But my confusion there lies in the fact that there are still TWO inputs into the second beam splitter. What do those two inputs represent?

Thanks again for the help.
 
These "paths" are |0> and |1> by themselves, unrelated to whether any measurement is done or not. Again, taking a classical pucture, you can say that you have some wave propagating right and some wave propagating up. Or you can talk of them as of one wave propagating both up and right (a superposition).

The actual state of the photon is a superposition, but if you put a mirror on some path, that mirror will affect only one part of the superposition - the same way as a mirror put on the way of the classical wave will affect only the part of the wave which collided with a mirror.

Before you even talk about "detection" which is a quantum phenomena, try to fully understand how a classical light would propagate through the system. This system is known as https://en.m.wikipedia.org/wiki/Mach–Zehnder_interferometer and must be described in many places on internet, including some very basic layman level.
 
eprparadox said:
does it even make sense to think about these two different paths? Or is EACH outgoing path through BS1 this same superposition state

You will have a very hard time if you try to think of each outgoing path's state on its own.

Basically, in order to do so, you'll have to understand mixed states, partial traces, and second quantization. You'll have to start thinking of the superpositions as this:

##\frac{1}{\sqrt{2}}|\text{left}_{\text{photon=yes}}\rangle |\text{right}_{\text{photon=no}}\rangle + \frac{1}{\sqrt{2}}|\text{left}_{\text{photon=no}}\rangle |\text{right}_{\text{photon=yes}}\rangle##

then, in order to focus on one path, you'll have to "trace out" the other path. This only works if you convert to a density matrix first. If you trace out ##|\text{right}_*\rangle## you get:

##0.5 |\text{left}_{\text{photon=no}}\rangle\langle\text{left}_{\text{photon=no}}| + 0.5 |\text{left}_{\text{photon=yes}}\rangle\langle\text{left}_{\text{photon=yes}}|##

Which is equivalent to a classical probability distribution. Not because the state is actually random instead of under superposition, but because the process we used throws away the information necessary to understand in what way the state is quantum instead of probabilistic.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
This is still a great mystery, Einstein called it ""spooky action at a distance" But science and mathematics are full of concepts which at first cause great bafflement but in due course are just accepted. In the case of Quantum Mechanics this gave rise to the saying "Shut up and calculate". In other words, don't try to "understand it" just accept that the mathematics works. The square root of minus one is another example - it does not exist and yet electrical engineers use it to do...

Similar threads

Replies
2
Views
2K
Replies
3
Views
1K
Replies
13
Views
2K
Replies
5
Views
1K
Replies
2
Views
2K
Replies
8
Views
956
Back
Top