Petar Mali
- 283
- 0
Relations for an ideal Fermi gas:
\frac{P}{k_BT}=\frac{1}{\lambda_D^3}f_{5/2}(\lambda)
\frac{1}{\upsilon}=\frac{1}{\lambda_D^3}f_{3/2}(\lambda)
But in some book books I find
\frac{P}{k_BT}=\frac{g}{\lambda_D^3}f_{5/2}(\lambda)
\frac{1}{\upsilon}=\frac{g}{\lambda_D^3}f_{3/2}(\lambda)
where g is degeneration of spin I
guess.
g=2s+1
Can you tell me something about this
\lambda_D=\sqrt{\frac{2 \pi\hbar^2}{mk_BT}}
f_k(\lambda)=\sum^{\infty}_{n=1}(-1)^{n-1}\frac{\lambda^n}{n^k}
\lambda=e^{\frac{\mu}{\theta}} - fugacity
\frac{P}{k_BT}=\frac{1}{\lambda_D^3}f_{5/2}(\lambda)
\frac{1}{\upsilon}=\frac{1}{\lambda_D^3}f_{3/2}(\lambda)
But in some book books I find
\frac{P}{k_BT}=\frac{g}{\lambda_D^3}f_{5/2}(\lambda)
\frac{1}{\upsilon}=\frac{g}{\lambda_D^3}f_{3/2}(\lambda)
where g is degeneration of spin I
guess.
g=2s+1
Can you tell me something about this
\lambda_D=\sqrt{\frac{2 \pi\hbar^2}{mk_BT}}
f_k(\lambda)=\sum^{\infty}_{n=1}(-1)^{n-1}\frac{\lambda^n}{n^k}
\lambda=e^{\frac{\mu}{\theta}} - fugacity