The von Neumann entropy refers to state of a quantum system. So the correct question to ask is what's the Neumann entropy for a given state of a qubit. A qubit is a system with a two-dimensional Hilbert space of states. The most general state is given by a statistical operator, and we can work in a given basis (e.g., if we consider the spin of a spin-1/2 particle the standard eigenbasis ##|+1/2 \rangle, \quad -1/2,\rangle## of the operator ##\hat{\sigma}_3##). The statistical operator is given as a positive semidefinite hermitean matrix ##\rho_{ij}## with trace 1, and the entropy is defined as
$$S=-k_{\text{B}} \mathrm{Tr} \hat{\rho} \ln \hat{\rho}.$$
Now you can always diagonalize the matrix representing the statistical operator, then it's juse given by the corresponding matrix elements ##\rho_{ij}'=\mathrm{diag}(p,1-p)##, and the (basis independent!) entropy is given by
$$S=-k_{\text{B}} [p ln p + (1-p) \ln(1-p)].$$
Of course ##p \in [0,1]## and by definition for ##p=0## or ##p=1## you have to interpret ##x \ln x## for ##x \rightarrow 0## to be ##0##.
You can prove that you have maximal information about the system if and only ##p=0## or ##p=1##, i.e., if the qubit is prepared in a pure state. The entropy becomes maximal for ##p=1/2##, as is expected for thermal equilibrium.