Quantum mechanics (angular momentum)

icelevistus
Messages
17
Reaction score
0
A particle is described by the wave function

\[CapitalPsi] (\[Rho], \[Phi]) =
AE^(-\[Rho]^2/2 \[CapitalDelta]^2) (Cos[\[Phi]])^2

Show

P (Subscript[l, z] = 0) = 2/3
P (Subscript[l, z] = 2 h) = 1/6
P (Subscript[l, z] = -2 h) = 1/6





I have already used

Subscript[\[CapitalPhi], m] (\[Phi]) = 1/Sqrt[2 \[Pi]] E^Im\[Phi]

as the problem suggests to express the cos^2 as PHI(sub m) states




I am simply brickwalled at how to calculate these probabilities. The only way I remember to calculate probabilities given a wavefunction is for position (probability of measuring the particle within a certain region). Or also, I remember how to find the probability of a wavefunction collapsing to a particular state if it is written as a linear combination of states. Can someone point me to the relevant equation or idea?
 
Physics news on Phys.org
Sorry, looks like that Mathematica code was no good.

Is it still legible?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top