Quantum mechanics: density matrix purification

vj3336
Messages
15
Reaction score
0

Homework Statement



Given a matrix

M(a) = (a -(1/4)i ; (1/4)i a)

(semicolon separates rows)

a) Determine a so that M(a) is a density matrix.
b) Show that the system is in a mixed state.
c) Purify M(a)


The Attempt at a Solution



a) from conditions for a density matrices

1) M(a)=M(a)*
2) tr(M(a))=1
3) M(a)>=0

form 1) a must be real
from 2) a=1/2
I'm not sure what 3) means, but if it means trace and determinant
must be non-negative, than this is also fulfilled if a=1/2.

b) I think that condition for system to be in mixed state is:
M(a)^2 /= M(a)
since this is true for M(a), system is in mixed state.

c) Don't know how to solve this part, Maybe it has to do something with decomposing a matrix ?
 
Physics news on Phys.org
M(a)≥0 means xM(a)x≥0 for all x.
 
thanks,
if I take x to be a vector with components (x y) then,
x†M(a)x = a(xx† + yy†) + (1/4)i(xy† + x†y)

this then means a(xx† + yy†)≥(1/4)i(xy† + x†y)
but term on the left hand side is real and term on the right hand side may be complex,
so how can I conclude when is x†M(a)x≥0 ?

also is my answer to b) correct ?
and if anyone would give me a little help on c)
 
First, you made a sign error. Second, note that x*y and xy* are conjugates.

Your answer to (b) is correct.

I'm not sure what they're asking for in (c).
 
Last edited:
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.

Similar threads

Back
Top