Quantum mechanics(expected probability)

  • Thread starter Thread starter member 141513
  • Start date Start date
  • Tags Tags
    Probability Quantum
member 141513

Homework Statement



suppose we have two particles, first with probable states A1,A2,A3 and state B1,B2,B3 each with a certain probability P
Now if we know the probability of composite state |C> is Q
what is the probability to get the first particle to be A1?

im troubled. please help thanks

Here ,probability of getting C is any linear combination of A and B = aP(A)+bP(B)

Homework Equations





The Attempt at a Solution


i have tried to do like this
because C equals one of these 9 states (A1,A2,A3)+(B1,B2,B3)
lets call them |1>,|2>,...,|9>

i don't know how to relate use the "resultant" prbability to get back the original component probability

is it correct to use, for example <C|1> in calculation, I am in trouble
 
Physics news on Phys.org
You have a very fuzzy explanation of the problem, but isn't it as simple as (A1,Bi) summed over i?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top